Metamath Proof Explorer


Theorem mirfv

Description: Value of the point inversion function M . Definition 7.5 of Schwabhauser p. 49. (Contributed by Thierry Arnoux, 30-May-2019)

Ref Expression
Hypotheses mirval.p 𝑃 = ( Base ‘ 𝐺 )
mirval.d = ( dist ‘ 𝐺 )
mirval.i 𝐼 = ( Itv ‘ 𝐺 )
mirval.l 𝐿 = ( LineG ‘ 𝐺 )
mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
mirval.g ( 𝜑𝐺 ∈ TarskiG )
mirval.a ( 𝜑𝐴𝑃 )
mirfv.m 𝑀 = ( 𝑆𝐴 )
mirfv.b ( 𝜑𝐵𝑃 )
Assertion mirfv ( 𝜑 → ( 𝑀𝐵 ) = ( 𝑧𝑃 ( ( 𝐴 𝑧 ) = ( 𝐴 𝐵 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 mirval.p 𝑃 = ( Base ‘ 𝐺 )
2 mirval.d = ( dist ‘ 𝐺 )
3 mirval.i 𝐼 = ( Itv ‘ 𝐺 )
4 mirval.l 𝐿 = ( LineG ‘ 𝐺 )
5 mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
6 mirval.g ( 𝜑𝐺 ∈ TarskiG )
7 mirval.a ( 𝜑𝐴𝑃 )
8 mirfv.m 𝑀 = ( 𝑆𝐴 )
9 mirfv.b ( 𝜑𝐵𝑃 )
10 1 2 3 4 5 6 7 mirval ( 𝜑 → ( 𝑆𝐴 ) = ( 𝑦𝑃 ↦ ( 𝑧𝑃 ( ( 𝐴 𝑧 ) = ( 𝐴 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) )
11 8 10 eqtrid ( 𝜑𝑀 = ( 𝑦𝑃 ↦ ( 𝑧𝑃 ( ( 𝐴 𝑧 ) = ( 𝐴 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) )
12 simplr ( ( ( 𝜑𝑦 = 𝐵 ) ∧ 𝑧𝑃 ) → 𝑦 = 𝐵 )
13 12 oveq2d ( ( ( 𝜑𝑦 = 𝐵 ) ∧ 𝑧𝑃 ) → ( 𝐴 𝑦 ) = ( 𝐴 𝐵 ) )
14 13 eqeq2d ( ( ( 𝜑𝑦 = 𝐵 ) ∧ 𝑧𝑃 ) → ( ( 𝐴 𝑧 ) = ( 𝐴 𝑦 ) ↔ ( 𝐴 𝑧 ) = ( 𝐴 𝐵 ) ) )
15 12 oveq2d ( ( ( 𝜑𝑦 = 𝐵 ) ∧ 𝑧𝑃 ) → ( 𝑧 𝐼 𝑦 ) = ( 𝑧 𝐼 𝐵 ) )
16 15 eleq2d ( ( ( 𝜑𝑦 = 𝐵 ) ∧ 𝑧𝑃 ) → ( 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ↔ 𝐴 ∈ ( 𝑧 𝐼 𝐵 ) ) )
17 14 16 anbi12d ( ( ( 𝜑𝑦 = 𝐵 ) ∧ 𝑧𝑃 ) → ( ( ( 𝐴 𝑧 ) = ( 𝐴 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ↔ ( ( 𝐴 𝑧 ) = ( 𝐴 𝐵 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝐵 ) ) ) )
18 17 riotabidva ( ( 𝜑𝑦 = 𝐵 ) → ( 𝑧𝑃 ( ( 𝐴 𝑧 ) = ( 𝐴 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) = ( 𝑧𝑃 ( ( 𝐴 𝑧 ) = ( 𝐴 𝐵 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝐵 ) ) ) )
19 riotaex ( 𝑧𝑃 ( ( 𝐴 𝑧 ) = ( 𝐴 𝐵 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝐵 ) ) ) ∈ V
20 19 a1i ( 𝜑 → ( 𝑧𝑃 ( ( 𝐴 𝑧 ) = ( 𝐴 𝐵 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝐵 ) ) ) ∈ V )
21 11 18 9 20 fvmptd ( 𝜑 → ( 𝑀𝐵 ) = ( 𝑧𝑃 ( ( 𝐴 𝑧 ) = ( 𝐴 𝐵 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝐵 ) ) ) )