Metamath Proof Explorer


Theorem colperpexlem2

Description: Lemma for colperpex . Second part of lemma 8.20 of Schwabhauser p. 62. (Contributed by Thierry Arnoux, 10-Nov-2019)

Ref Expression
Hypotheses colperpex.p P=BaseG
colperpex.d -˙=distG
colperpex.i I=ItvG
colperpex.l L=Line𝒢G
colperpex.g φG𝒢Tarski
colperpexlem.s S=pInv𝒢G
colperpexlem.m M=SA
colperpexlem.n N=SB
colperpexlem.k K=SQ
colperpexlem.a φAP
colperpexlem.b φBP
colperpexlem.c φCP
colperpexlem.q φQP
colperpexlem.1 φ⟨“ABC”⟩𝒢G
colperpexlem.2 φKMC=NC
colperpexlem2.e φBC
Assertion colperpexlem2 φAQ

Proof

Step Hyp Ref Expression
1 colperpex.p P=BaseG
2 colperpex.d -˙=distG
3 colperpex.i I=ItvG
4 colperpex.l L=Line𝒢G
5 colperpex.g φG𝒢Tarski
6 colperpexlem.s S=pInv𝒢G
7 colperpexlem.m M=SA
8 colperpexlem.n N=SB
9 colperpexlem.k K=SQ
10 colperpexlem.a φAP
11 colperpexlem.b φBP
12 colperpexlem.c φCP
13 colperpexlem.q φQP
14 colperpexlem.1 φ⟨“ABC”⟩𝒢G
15 colperpexlem.2 φKMC=NC
16 colperpexlem2.e φBC
17 simpr φA=QA=Q
18 17 fveq2d φA=QSA=SQ
19 18 7 9 3eqtr4g φA=QM=K
20 19 fveq1d φA=QMMC=KMC
21 1 2 3 4 6 5 10 7 12 mirmir φMMC=C
22 21 adantr φA=QMMC=C
23 15 adantr φA=QKMC=NC
24 20 22 23 3eqtr3rd φA=QNC=C
25 1 2 3 4 6 5 11 8 12 mirinv φNC=CB=C
26 25 adantr φA=QNC=CB=C
27 24 26 mpbid φA=QB=C
28 27 ex φA=QB=C
29 28 necon3ad φBC¬A=Q
30 16 29 mpd φ¬A=Q
31 30 neqned φAQ