| Step |
Hyp |
Ref |
Expression |
| 1 |
|
israg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
israg.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
israg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
israg.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
israg.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 6 |
|
israg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 7 |
|
israg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 8 |
|
israg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 9 |
|
israg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 10 |
|
ragmir.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 11 |
|
mirrag.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐷 ) |
| 12 |
|
mirrag.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 13 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ 𝐵 ) |
| 14 |
1 2 3 4 5 6 8 13 9
|
mircl |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ∈ 𝑃 ) |
| 15 |
1 2 3 4 5 6 7 8 9
|
israg |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐴 − 𝐶 ) = ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) |
| 16 |
10 15
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
| 17 |
1 2 3 4 5 6 12 11 7 9 7 14 16
|
mircgrs |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ 𝐶 ) ) = ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) |
| 18 |
1 2 3 4 5 6 12 11 9 8
|
mirmir2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) = ( ( 𝑆 ‘ ( 𝑀 ‘ 𝐵 ) ) ‘ ( 𝑀 ‘ 𝐶 ) ) ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) = ( ( 𝑀 ‘ 𝐴 ) − ( ( 𝑆 ‘ ( 𝑀 ‘ 𝐵 ) ) ‘ ( 𝑀 ‘ 𝐶 ) ) ) ) |
| 20 |
17 19
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ 𝐶 ) ) = ( ( 𝑀 ‘ 𝐴 ) − ( ( 𝑆 ‘ ( 𝑀 ‘ 𝐵 ) ) ‘ ( 𝑀 ‘ 𝐶 ) ) ) ) |
| 21 |
1 2 3 4 5 6 12 11 7
|
mircl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ 𝑃 ) |
| 22 |
1 2 3 4 5 6 12 11 8
|
mircl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ 𝑃 ) |
| 23 |
1 2 3 4 5 6 12 11 9
|
mircl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐶 ) ∈ 𝑃 ) |
| 24 |
1 2 3 4 5 6 21 22 23
|
israg |
⊢ ( 𝜑 → ( 〈“ ( 𝑀 ‘ 𝐴 ) ( 𝑀 ‘ 𝐵 ) ( 𝑀 ‘ 𝐶 ) ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ 𝐶 ) ) = ( ( 𝑀 ‘ 𝐴 ) − ( ( 𝑆 ‘ ( 𝑀 ‘ 𝐵 ) ) ‘ ( 𝑀 ‘ 𝐶 ) ) ) ) ) |
| 25 |
20 24
|
mpbird |
⊢ ( 𝜑 → 〈“ ( 𝑀 ‘ 𝐴 ) ( 𝑀 ‘ 𝐵 ) ( 𝑀 ‘ 𝐶 ) ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |