Metamath Proof Explorer


Theorem mirrag

Description: Right angle is conserved by point inversion. (Contributed by Thierry Arnoux, 3-Nov-2019)

Ref Expression
Hypotheses israg.p
|- P = ( Base ` G )
israg.d
|- .- = ( dist ` G )
israg.i
|- I = ( Itv ` G )
israg.l
|- L = ( LineG ` G )
israg.s
|- S = ( pInvG ` G )
israg.g
|- ( ph -> G e. TarskiG )
israg.a
|- ( ph -> A e. P )
israg.b
|- ( ph -> B e. P )
israg.c
|- ( ph -> C e. P )
ragmir.1
|- ( ph -> <" A B C "> e. ( raG ` G ) )
mirrag.m
|- M = ( S ` D )
mirrag.d
|- ( ph -> D e. P )
Assertion mirrag
|- ( ph -> <" ( M ` A ) ( M ` B ) ( M ` C ) "> e. ( raG ` G ) )

Proof

Step Hyp Ref Expression
1 israg.p
 |-  P = ( Base ` G )
2 israg.d
 |-  .- = ( dist ` G )
3 israg.i
 |-  I = ( Itv ` G )
4 israg.l
 |-  L = ( LineG ` G )
5 israg.s
 |-  S = ( pInvG ` G )
6 israg.g
 |-  ( ph -> G e. TarskiG )
7 israg.a
 |-  ( ph -> A e. P )
8 israg.b
 |-  ( ph -> B e. P )
9 israg.c
 |-  ( ph -> C e. P )
10 ragmir.1
 |-  ( ph -> <" A B C "> e. ( raG ` G ) )
11 mirrag.m
 |-  M = ( S ` D )
12 mirrag.d
 |-  ( ph -> D e. P )
13 eqid
 |-  ( S ` B ) = ( S ` B )
14 1 2 3 4 5 6 8 13 9 mircl
 |-  ( ph -> ( ( S ` B ) ` C ) e. P )
15 1 2 3 4 5 6 7 8 9 israg
 |-  ( ph -> ( <" A B C "> e. ( raG ` G ) <-> ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) ) )
16 10 15 mpbid
 |-  ( ph -> ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) )
17 1 2 3 4 5 6 12 11 7 9 7 14 16 mircgrs
 |-  ( ph -> ( ( M ` A ) .- ( M ` C ) ) = ( ( M ` A ) .- ( M ` ( ( S ` B ) ` C ) ) ) )
18 1 2 3 4 5 6 12 11 9 8 mirmir2
 |-  ( ph -> ( M ` ( ( S ` B ) ` C ) ) = ( ( S ` ( M ` B ) ) ` ( M ` C ) ) )
19 18 oveq2d
 |-  ( ph -> ( ( M ` A ) .- ( M ` ( ( S ` B ) ` C ) ) ) = ( ( M ` A ) .- ( ( S ` ( M ` B ) ) ` ( M ` C ) ) ) )
20 17 19 eqtrd
 |-  ( ph -> ( ( M ` A ) .- ( M ` C ) ) = ( ( M ` A ) .- ( ( S ` ( M ` B ) ) ` ( M ` C ) ) ) )
21 1 2 3 4 5 6 12 11 7 mircl
 |-  ( ph -> ( M ` A ) e. P )
22 1 2 3 4 5 6 12 11 8 mircl
 |-  ( ph -> ( M ` B ) e. P )
23 1 2 3 4 5 6 12 11 9 mircl
 |-  ( ph -> ( M ` C ) e. P )
24 1 2 3 4 5 6 21 22 23 israg
 |-  ( ph -> ( <" ( M ` A ) ( M ` B ) ( M ` C ) "> e. ( raG ` G ) <-> ( ( M ` A ) .- ( M ` C ) ) = ( ( M ` A ) .- ( ( S ` ( M ` B ) ) ` ( M ` C ) ) ) ) )
25 20 24 mpbird
 |-  ( ph -> <" ( M ` A ) ( M ` B ) ( M ` C ) "> e. ( raG ` G ) )