Step |
Hyp |
Ref |
Expression |
1 |
|
israg.p |
|- P = ( Base ` G ) |
2 |
|
israg.d |
|- .- = ( dist ` G ) |
3 |
|
israg.i |
|- I = ( Itv ` G ) |
4 |
|
israg.l |
|- L = ( LineG ` G ) |
5 |
|
israg.s |
|- S = ( pInvG ` G ) |
6 |
|
israg.g |
|- ( ph -> G e. TarskiG ) |
7 |
|
israg.a |
|- ( ph -> A e. P ) |
8 |
|
israg.b |
|- ( ph -> B e. P ) |
9 |
|
israg.c |
|- ( ph -> C e. P ) |
10 |
|
ragmir.1 |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |
11 |
|
mirrag.m |
|- M = ( S ` D ) |
12 |
|
mirrag.d |
|- ( ph -> D e. P ) |
13 |
|
eqid |
|- ( S ` B ) = ( S ` B ) |
14 |
1 2 3 4 5 6 8 13 9
|
mircl |
|- ( ph -> ( ( S ` B ) ` C ) e. P ) |
15 |
1 2 3 4 5 6 7 8 9
|
israg |
|- ( ph -> ( <" A B C "> e. ( raG ` G ) <-> ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) ) ) |
16 |
10 15
|
mpbid |
|- ( ph -> ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) ) |
17 |
1 2 3 4 5 6 12 11 7 9 7 14 16
|
mircgrs |
|- ( ph -> ( ( M ` A ) .- ( M ` C ) ) = ( ( M ` A ) .- ( M ` ( ( S ` B ) ` C ) ) ) ) |
18 |
1 2 3 4 5 6 12 11 9 8
|
mirmir2 |
|- ( ph -> ( M ` ( ( S ` B ) ` C ) ) = ( ( S ` ( M ` B ) ) ` ( M ` C ) ) ) |
19 |
18
|
oveq2d |
|- ( ph -> ( ( M ` A ) .- ( M ` ( ( S ` B ) ` C ) ) ) = ( ( M ` A ) .- ( ( S ` ( M ` B ) ) ` ( M ` C ) ) ) ) |
20 |
17 19
|
eqtrd |
|- ( ph -> ( ( M ` A ) .- ( M ` C ) ) = ( ( M ` A ) .- ( ( S ` ( M ` B ) ) ` ( M ` C ) ) ) ) |
21 |
1 2 3 4 5 6 12 11 7
|
mircl |
|- ( ph -> ( M ` A ) e. P ) |
22 |
1 2 3 4 5 6 12 11 8
|
mircl |
|- ( ph -> ( M ` B ) e. P ) |
23 |
1 2 3 4 5 6 12 11 9
|
mircl |
|- ( ph -> ( M ` C ) e. P ) |
24 |
1 2 3 4 5 6 21 22 23
|
israg |
|- ( ph -> ( <" ( M ` A ) ( M ` B ) ( M ` C ) "> e. ( raG ` G ) <-> ( ( M ` A ) .- ( M ` C ) ) = ( ( M ` A ) .- ( ( S ` ( M ` B ) ) ` ( M ` C ) ) ) ) ) |
25 |
20 24
|
mpbird |
|- ( ph -> <" ( M ` A ) ( M ` B ) ( M ` C ) "> e. ( raG ` G ) ) |