Metamath Proof Explorer


Theorem mirrag

Description: Right angle is conserved by point inversion. (Contributed by Thierry Arnoux, 3-Nov-2019)

Ref Expression
Hypotheses israg.p P=BaseG
israg.d -˙=distG
israg.i I=ItvG
israg.l L=Line𝒢G
israg.s S=pInv𝒢G
israg.g φG𝒢Tarski
israg.a φAP
israg.b φBP
israg.c φCP
ragmir.1 φ⟨“ABC”⟩𝒢G
mirrag.m M=SD
mirrag.d φDP
Assertion mirrag φ⟨“MAMBMC”⟩𝒢G

Proof

Step Hyp Ref Expression
1 israg.p P=BaseG
2 israg.d -˙=distG
3 israg.i I=ItvG
4 israg.l L=Line𝒢G
5 israg.s S=pInv𝒢G
6 israg.g φG𝒢Tarski
7 israg.a φAP
8 israg.b φBP
9 israg.c φCP
10 ragmir.1 φ⟨“ABC”⟩𝒢G
11 mirrag.m M=SD
12 mirrag.d φDP
13 eqid SB=SB
14 1 2 3 4 5 6 8 13 9 mircl φSBCP
15 1 2 3 4 5 6 7 8 9 israg φ⟨“ABC”⟩𝒢GA-˙C=A-˙SBC
16 10 15 mpbid φA-˙C=A-˙SBC
17 1 2 3 4 5 6 12 11 7 9 7 14 16 mircgrs φMA-˙MC=MA-˙MSBC
18 1 2 3 4 5 6 12 11 9 8 mirmir2 φMSBC=SMBMC
19 18 oveq2d φMA-˙MSBC=MA-˙SMBMC
20 17 19 eqtrd φMA-˙MC=MA-˙SMBMC
21 1 2 3 4 5 6 12 11 7 mircl φMAP
22 1 2 3 4 5 6 12 11 8 mircl φMBP
23 1 2 3 4 5 6 12 11 9 mircl φMCP
24 1 2 3 4 5 6 21 22 23 israg φ⟨“MAMBMC”⟩𝒢GMA-˙MC=MA-˙SMBMC
25 20 24 mpbird φ⟨“MAMBMC”⟩𝒢G