Step |
Hyp |
Ref |
Expression |
1 |
|
israg.p |
|- P = ( Base ` G ) |
2 |
|
israg.d |
|- .- = ( dist ` G ) |
3 |
|
israg.i |
|- I = ( Itv ` G ) |
4 |
|
israg.l |
|- L = ( LineG ` G ) |
5 |
|
israg.s |
|- S = ( pInvG ` G ) |
6 |
|
israg.g |
|- ( ph -> G e. TarskiG ) |
7 |
|
israg.a |
|- ( ph -> A e. P ) |
8 |
|
israg.b |
|- ( ph -> B e. P ) |
9 |
|
israg.c |
|- ( ph -> C e. P ) |
10 |
|
ragcol.d |
|- ( ph -> D e. P ) |
11 |
|
ragcol.1 |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |
12 |
|
ragcol.2 |
|- ( ph -> A =/= B ) |
13 |
|
ragcol.3 |
|- ( ph -> ( A e. ( B L D ) \/ B = D ) ) |
14 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
15 |
|
eqid |
|- ( S ` B ) = ( S ` B ) |
16 |
1 2 3 4 5 6 8 15 9
|
mircl |
|- ( ph -> ( ( S ` B ) ` C ) e. P ) |
17 |
12
|
necomd |
|- ( ph -> B =/= A ) |
18 |
1 2 3 4 5 6 8 15 9
|
mircgr |
|- ( ph -> ( B .- ( ( S ` B ) ` C ) ) = ( B .- C ) ) |
19 |
18
|
eqcomd |
|- ( ph -> ( B .- C ) = ( B .- ( ( S ` B ) ` C ) ) ) |
20 |
1 2 3 4 5 6 7 8 9
|
israg |
|- ( ph -> ( <" A B C "> e. ( raG ` G ) <-> ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) ) ) |
21 |
11 20
|
mpbid |
|- ( ph -> ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) ) |
22 |
1 4 3 6 8 7 10 14 9 16 2 17 13 19 21
|
lncgr |
|- ( ph -> ( D .- C ) = ( D .- ( ( S ` B ) ` C ) ) ) |
23 |
1 2 3 4 5 6 10 8 9
|
israg |
|- ( ph -> ( <" D B C "> e. ( raG ` G ) <-> ( D .- C ) = ( D .- ( ( S ` B ) ` C ) ) ) ) |
24 |
22 23
|
mpbird |
|- ( ph -> <" D B C "> e. ( raG ` G ) ) |