| Step |
Hyp |
Ref |
Expression |
| 1 |
|
israg.p |
|- P = ( Base ` G ) |
| 2 |
|
israg.d |
|- .- = ( dist ` G ) |
| 3 |
|
israg.i |
|- I = ( Itv ` G ) |
| 4 |
|
israg.l |
|- L = ( LineG ` G ) |
| 5 |
|
israg.s |
|- S = ( pInvG ` G ) |
| 6 |
|
israg.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
israg.a |
|- ( ph -> A e. P ) |
| 8 |
|
israg.b |
|- ( ph -> B e. P ) |
| 9 |
|
israg.c |
|- ( ph -> C e. P ) |
| 10 |
|
ragmir.1 |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |
| 11 |
|
eqid |
|- ( S ` B ) = ( S ` B ) |
| 12 |
1 2 3 4 5 6 8 11 9
|
mirmir |
|- ( ph -> ( ( S ` B ) ` ( ( S ` B ) ` C ) ) = C ) |
| 13 |
12
|
oveq2d |
|- ( ph -> ( A .- ( ( S ` B ) ` ( ( S ` B ) ` C ) ) ) = ( A .- C ) ) |
| 14 |
1 2 3 4 5 6 7 8 9
|
israg |
|- ( ph -> ( <" A B C "> e. ( raG ` G ) <-> ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) ) ) |
| 15 |
10 14
|
mpbid |
|- ( ph -> ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) ) |
| 16 |
13 15
|
eqtr2d |
|- ( ph -> ( A .- ( ( S ` B ) ` C ) ) = ( A .- ( ( S ` B ) ` ( ( S ` B ) ` C ) ) ) ) |
| 17 |
1 2 3 4 5 6 8 11 9
|
mircl |
|- ( ph -> ( ( S ` B ) ` C ) e. P ) |
| 18 |
1 2 3 4 5 6 7 8 17
|
israg |
|- ( ph -> ( <" A B ( ( S ` B ) ` C ) "> e. ( raG ` G ) <-> ( A .- ( ( S ` B ) ` C ) ) = ( A .- ( ( S ` B ) ` ( ( S ` B ) ` C ) ) ) ) ) |
| 19 |
16 18
|
mpbird |
|- ( ph -> <" A B ( ( S ` B ) ` C ) "> e. ( raG ` G ) ) |