| Step | Hyp | Ref | Expression | 
						
							| 1 |  | israg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | israg.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | israg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | israg.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 5 |  | israg.s | ⊢ 𝑆  =  ( pInvG ‘ 𝐺 ) | 
						
							| 6 |  | israg.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 7 |  | israg.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 8 |  | israg.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 9 |  | israg.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 10 |  | ragmir.1 | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑆 ‘ 𝐵 )  =  ( 𝑆 ‘ 𝐵 ) | 
						
							| 12 | 1 2 3 4 5 6 8 11 9 | mirmir | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) )  =  𝐶 ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( 𝜑  →  ( 𝐴  −  ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) )  =  ( 𝐴  −  𝐶 ) ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 | israg | ⊢ ( 𝜑  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( ∟G ‘ 𝐺 )  ↔  ( 𝐴  −  𝐶 )  =  ( 𝐴  −  ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) | 
						
							| 15 | 10 14 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  −  𝐶 )  =  ( 𝐴  −  ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) | 
						
							| 16 | 13 15 | eqtr2d | ⊢ ( 𝜑  →  ( 𝐴  −  ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) )  =  ( 𝐴  −  ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) | 
						
							| 17 | 1 2 3 4 5 6 8 11 9 | mircl | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 )  ∈  𝑃 ) | 
						
							| 18 | 1 2 3 4 5 6 7 8 17 | israg | ⊢ ( 𝜑  →  ( 〈“ 𝐴 𝐵 ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ”〉  ∈  ( ∟G ‘ 𝐺 )  ↔  ( 𝐴  −  ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) )  =  ( 𝐴  −  ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) ) | 
						
							| 19 | 16 18 | mpbird | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ”〉  ∈  ( ∟G ‘ 𝐺 ) ) |