| Step | Hyp | Ref | Expression | 
						
							| 1 |  | colperpex.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | colperpex.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | colperpex.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | colperpex.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | colperpex.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 6 |  | perpdrag.1 |  |-  ( ph -> A e. D ) | 
						
							| 7 |  | perpdrag.2 |  |-  ( ph -> B e. D ) | 
						
							| 8 |  | perpdrag.3 |  |-  ( ph -> C e. P ) | 
						
							| 9 |  | perpdrag.4 |  |-  ( ph -> D ( perpG ` G ) ( B L C ) ) | 
						
							| 10 |  | eqidd |  |-  ( ( ph /\ A = B ) -> A = A ) | 
						
							| 11 |  | simpr |  |-  ( ( ph /\ A = B ) -> A = B ) | 
						
							| 12 |  | eqidd |  |-  ( ( ph /\ A = B ) -> C = C ) | 
						
							| 13 | 10 11 12 | s3eqd |  |-  ( ( ph /\ A = B ) -> <" A A C "> = <" A B C "> ) | 
						
							| 14 |  | eqid |  |-  ( pInvG ` G ) = ( pInvG ` G ) | 
						
							| 15 | 4 5 9 | perpln1 |  |-  ( ph -> D e. ran L ) | 
						
							| 16 | 1 4 3 5 15 6 | tglnpt |  |-  ( ph -> A e. P ) | 
						
							| 17 | 1 2 3 4 14 5 8 16 8 | ragtrivb |  |-  ( ph -> <" C A A "> e. ( raG ` G ) ) | 
						
							| 18 | 1 2 3 4 14 5 8 16 16 17 | ragcom |  |-  ( ph -> <" A A C "> e. ( raG ` G ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ A = B ) -> <" A A C "> e. ( raG ` G ) ) | 
						
							| 20 | 13 19 | eqeltrrd |  |-  ( ( ph /\ A = B ) -> <" A B C "> e. ( raG ` G ) ) | 
						
							| 21 | 5 | adantr |  |-  ( ( ph /\ A =/= B ) -> G e. TarskiG ) | 
						
							| 22 | 16 | adantr |  |-  ( ( ph /\ A =/= B ) -> A e. P ) | 
						
							| 23 | 1 4 3 5 15 7 | tglnpt |  |-  ( ph -> B e. P ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ph /\ A =/= B ) -> B e. P ) | 
						
							| 25 | 7 | adantr |  |-  ( ( ph /\ A =/= B ) -> B e. D ) | 
						
							| 26 |  | simpr |  |-  ( ( ph /\ A =/= B ) -> A =/= B ) | 
						
							| 27 | 15 | adantr |  |-  ( ( ph /\ A =/= B ) -> D e. ran L ) | 
						
							| 28 | 6 | adantr |  |-  ( ( ph /\ A =/= B ) -> A e. D ) | 
						
							| 29 | 1 3 4 21 22 24 26 26 27 28 25 | tglinethru |  |-  ( ( ph /\ A =/= B ) -> D = ( A L B ) ) | 
						
							| 30 | 25 29 | eleqtrd |  |-  ( ( ph /\ A =/= B ) -> B e. ( A L B ) ) | 
						
							| 31 | 8 | adantr |  |-  ( ( ph /\ A =/= B ) -> C e. P ) | 
						
							| 32 | 9 | adantr |  |-  ( ( ph /\ A =/= B ) -> D ( perpG ` G ) ( B L C ) ) | 
						
							| 33 | 29 32 | eqbrtrrd |  |-  ( ( ph /\ A =/= B ) -> ( A L B ) ( perpG ` G ) ( B L C ) ) | 
						
							| 34 | 1 2 3 4 21 22 24 30 31 33 | perprag |  |-  ( ( ph /\ A =/= B ) -> <" A B C "> e. ( raG ` G ) ) | 
						
							| 35 | 20 34 | pm2.61dane |  |-  ( ph -> <" A B C "> e. ( raG ` G ) ) |