Metamath Proof Explorer


Theorem isperp2d

Description: One direction of isperp2 . (Contributed by Thierry Arnoux, 10-Nov-2019)

Ref Expression
Hypotheses isperp.p 𝑃 = ( Base ‘ 𝐺 )
isperp.d = ( dist ‘ 𝐺 )
isperp.i 𝐼 = ( Itv ‘ 𝐺 )
isperp.l 𝐿 = ( LineG ‘ 𝐺 )
isperp.g ( 𝜑𝐺 ∈ TarskiG )
isperp.a ( 𝜑𝐴 ∈ ran 𝐿 )
isperp2.b ( 𝜑𝐵 ∈ ran 𝐿 )
isperp2.x ( 𝜑𝑋 ∈ ( 𝐴𝐵 ) )
isperp2d.u ( 𝜑𝑈𝐴 )
isperp2d.v ( 𝜑𝑉𝐵 )
isperp2d.p ( 𝜑𝐴 ( ⟂G ‘ 𝐺 ) 𝐵 )
Assertion isperp2d ( 𝜑 → ⟨“ 𝑈 𝑋 𝑉 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 isperp.p 𝑃 = ( Base ‘ 𝐺 )
2 isperp.d = ( dist ‘ 𝐺 )
3 isperp.i 𝐼 = ( Itv ‘ 𝐺 )
4 isperp.l 𝐿 = ( LineG ‘ 𝐺 )
5 isperp.g ( 𝜑𝐺 ∈ TarskiG )
6 isperp.a ( 𝜑𝐴 ∈ ran 𝐿 )
7 isperp2.b ( 𝜑𝐵 ∈ ran 𝐿 )
8 isperp2.x ( 𝜑𝑋 ∈ ( 𝐴𝐵 ) )
9 isperp2d.u ( 𝜑𝑈𝐴 )
10 isperp2d.v ( 𝜑𝑉𝐵 )
11 isperp2d.p ( 𝜑𝐴 ( ⟂G ‘ 𝐺 ) 𝐵 )
12 1 2 3 4 5 6 7 8 isperp2 ( 𝜑 → ( 𝐴 ( ⟂G ‘ 𝐺 ) 𝐵 ↔ ∀ 𝑢𝐴𝑣𝐵 ⟨“ 𝑢 𝑋 𝑣 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) )
13 11 12 mpbid ( 𝜑 → ∀ 𝑢𝐴𝑣𝐵 ⟨“ 𝑢 𝑋 𝑣 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
14 id ( 𝑢 = 𝑈𝑢 = 𝑈 )
15 eqidd ( 𝑢 = 𝑈𝑋 = 𝑋 )
16 eqidd ( 𝑢 = 𝑈𝑣 = 𝑣 )
17 14 15 16 s3eqd ( 𝑢 = 𝑈 → ⟨“ 𝑢 𝑋 𝑣 ”⟩ = ⟨“ 𝑈 𝑋 𝑣 ”⟩ )
18 17 eleq1d ( 𝑢 = 𝑈 → ( ⟨“ 𝑢 𝑋 𝑣 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ↔ ⟨“ 𝑈 𝑋 𝑣 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) )
19 eqidd ( 𝑣 = 𝑉𝑈 = 𝑈 )
20 eqidd ( 𝑣 = 𝑉𝑋 = 𝑋 )
21 id ( 𝑣 = 𝑉𝑣 = 𝑉 )
22 19 20 21 s3eqd ( 𝑣 = 𝑉 → ⟨“ 𝑈 𝑋 𝑣 ”⟩ = ⟨“ 𝑈 𝑋 𝑉 ”⟩ )
23 22 eleq1d ( 𝑣 = 𝑉 → ( ⟨“ 𝑈 𝑋 𝑣 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ↔ ⟨“ 𝑈 𝑋 𝑉 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) )
24 18 23 rspc2v ( ( 𝑈𝐴𝑉𝐵 ) → ( ∀ 𝑢𝐴𝑣𝐵 ⟨“ 𝑢 𝑋 𝑣 ”⟩ ∈ ( ∟G ‘ 𝐺 ) → ⟨“ 𝑈 𝑋 𝑉 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) )
25 9 10 24 syl2anc ( 𝜑 → ( ∀ 𝑢𝐴𝑣𝐵 ⟨“ 𝑢 𝑋 𝑣 ”⟩ ∈ ( ∟G ‘ 𝐺 ) → ⟨“ 𝑈 𝑋 𝑉 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) )
26 13 25 mpd ( 𝜑 → ⟨“ 𝑈 𝑋 𝑉 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )