| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isperp.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | isperp.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | isperp.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | isperp.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | isperp.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 6 |  | isperp.a |  |-  ( ph -> A e. ran L ) | 
						
							| 7 |  | isperp2.b |  |-  ( ph -> B e. ran L ) | 
						
							| 8 |  | isperp2.x |  |-  ( ph -> X e. ( A i^i B ) ) | 
						
							| 9 |  | isperp2d.u |  |-  ( ph -> U e. A ) | 
						
							| 10 |  | isperp2d.v |  |-  ( ph -> V e. B ) | 
						
							| 11 |  | isperp2d.p |  |-  ( ph -> A ( perpG ` G ) B ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 | isperp2 |  |-  ( ph -> ( A ( perpG ` G ) B <-> A. u e. A A. v e. B <" u X v "> e. ( raG ` G ) ) ) | 
						
							| 13 | 11 12 | mpbid |  |-  ( ph -> A. u e. A A. v e. B <" u X v "> e. ( raG ` G ) ) | 
						
							| 14 |  | id |  |-  ( u = U -> u = U ) | 
						
							| 15 |  | eqidd |  |-  ( u = U -> X = X ) | 
						
							| 16 |  | eqidd |  |-  ( u = U -> v = v ) | 
						
							| 17 | 14 15 16 | s3eqd |  |-  ( u = U -> <" u X v "> = <" U X v "> ) | 
						
							| 18 | 17 | eleq1d |  |-  ( u = U -> ( <" u X v "> e. ( raG ` G ) <-> <" U X v "> e. ( raG ` G ) ) ) | 
						
							| 19 |  | eqidd |  |-  ( v = V -> U = U ) | 
						
							| 20 |  | eqidd |  |-  ( v = V -> X = X ) | 
						
							| 21 |  | id |  |-  ( v = V -> v = V ) | 
						
							| 22 | 19 20 21 | s3eqd |  |-  ( v = V -> <" U X v "> = <" U X V "> ) | 
						
							| 23 | 22 | eleq1d |  |-  ( v = V -> ( <" U X v "> e. ( raG ` G ) <-> <" U X V "> e. ( raG ` G ) ) ) | 
						
							| 24 | 18 23 | rspc2v |  |-  ( ( U e. A /\ V e. B ) -> ( A. u e. A A. v e. B <" u X v "> e. ( raG ` G ) -> <" U X V "> e. ( raG ` G ) ) ) | 
						
							| 25 | 9 10 24 | syl2anc |  |-  ( ph -> ( A. u e. A A. v e. B <" u X v "> e. ( raG ` G ) -> <" U X V "> e. ( raG ` G ) ) ) | 
						
							| 26 | 13 25 | mpd |  |-  ( ph -> <" U X V "> e. ( raG ` G ) ) |