Metamath Proof Explorer


Theorem isperp2d

Description: One direction of isperp2 . (Contributed by Thierry Arnoux, 10-Nov-2019)

Ref Expression
Hypotheses isperp.p
|- P = ( Base ` G )
isperp.d
|- .- = ( dist ` G )
isperp.i
|- I = ( Itv ` G )
isperp.l
|- L = ( LineG ` G )
isperp.g
|- ( ph -> G e. TarskiG )
isperp.a
|- ( ph -> A e. ran L )
isperp2.b
|- ( ph -> B e. ran L )
isperp2.x
|- ( ph -> X e. ( A i^i B ) )
isperp2d.u
|- ( ph -> U e. A )
isperp2d.v
|- ( ph -> V e. B )
isperp2d.p
|- ( ph -> A ( perpG ` G ) B )
Assertion isperp2d
|- ( ph -> <" U X V "> e. ( raG ` G ) )

Proof

Step Hyp Ref Expression
1 isperp.p
 |-  P = ( Base ` G )
2 isperp.d
 |-  .- = ( dist ` G )
3 isperp.i
 |-  I = ( Itv ` G )
4 isperp.l
 |-  L = ( LineG ` G )
5 isperp.g
 |-  ( ph -> G e. TarskiG )
6 isperp.a
 |-  ( ph -> A e. ran L )
7 isperp2.b
 |-  ( ph -> B e. ran L )
8 isperp2.x
 |-  ( ph -> X e. ( A i^i B ) )
9 isperp2d.u
 |-  ( ph -> U e. A )
10 isperp2d.v
 |-  ( ph -> V e. B )
11 isperp2d.p
 |-  ( ph -> A ( perpG ` G ) B )
12 1 2 3 4 5 6 7 8 isperp2
 |-  ( ph -> ( A ( perpG ` G ) B <-> A. u e. A A. v e. B <" u X v "> e. ( raG ` G ) ) )
13 11 12 mpbid
 |-  ( ph -> A. u e. A A. v e. B <" u X v "> e. ( raG ` G ) )
14 id
 |-  ( u = U -> u = U )
15 eqidd
 |-  ( u = U -> X = X )
16 eqidd
 |-  ( u = U -> v = v )
17 14 15 16 s3eqd
 |-  ( u = U -> <" u X v "> = <" U X v "> )
18 17 eleq1d
 |-  ( u = U -> ( <" u X v "> e. ( raG ` G ) <-> <" U X v "> e. ( raG ` G ) ) )
19 eqidd
 |-  ( v = V -> U = U )
20 eqidd
 |-  ( v = V -> X = X )
21 id
 |-  ( v = V -> v = V )
22 19 20 21 s3eqd
 |-  ( v = V -> <" U X v "> = <" U X V "> )
23 22 eleq1d
 |-  ( v = V -> ( <" U X v "> e. ( raG ` G ) <-> <" U X V "> e. ( raG ` G ) ) )
24 18 23 rspc2v
 |-  ( ( U e. A /\ V e. B ) -> ( A. u e. A A. v e. B <" u X v "> e. ( raG ` G ) -> <" U X V "> e. ( raG ` G ) ) )
25 9 10 24 syl2anc
 |-  ( ph -> ( A. u e. A A. v e. B <" u X v "> e. ( raG ` G ) -> <" U X V "> e. ( raG ` G ) ) )
26 13 25 mpd
 |-  ( ph -> <" U X V "> e. ( raG ` G ) )