Metamath Proof Explorer


Theorem isperp2d

Description: One direction of isperp2 . (Contributed by Thierry Arnoux, 10-Nov-2019)

Ref Expression
Hypotheses isperp.p P=BaseG
isperp.d -˙=distG
isperp.i I=ItvG
isperp.l L=Line𝒢G
isperp.g φG𝒢Tarski
isperp.a φAranL
isperp2.b φBranL
isperp2.x φXAB
isperp2d.u φUA
isperp2d.v φVB
isperp2d.p φA𝒢GB
Assertion isperp2d φ⟨“UXV”⟩𝒢G

Proof

Step Hyp Ref Expression
1 isperp.p P=BaseG
2 isperp.d -˙=distG
3 isperp.i I=ItvG
4 isperp.l L=Line𝒢G
5 isperp.g φG𝒢Tarski
6 isperp.a φAranL
7 isperp2.b φBranL
8 isperp2.x φXAB
9 isperp2d.u φUA
10 isperp2d.v φVB
11 isperp2d.p φA𝒢GB
12 1 2 3 4 5 6 7 8 isperp2 φA𝒢GBuAvB⟨“uXv”⟩𝒢G
13 11 12 mpbid φuAvB⟨“uXv”⟩𝒢G
14 id u=Uu=U
15 eqidd u=UX=X
16 eqidd u=Uv=v
17 14 15 16 s3eqd u=U⟨“uXv”⟩=⟨“UXv”⟩
18 17 eleq1d u=U⟨“uXv”⟩𝒢G⟨“UXv”⟩𝒢G
19 eqidd v=VU=U
20 eqidd v=VX=X
21 id v=Vv=V
22 19 20 21 s3eqd v=V⟨“UXv”⟩=⟨“UXV”⟩
23 22 eleq1d v=V⟨“UXv”⟩𝒢G⟨“UXV”⟩𝒢G
24 18 23 rspc2v UAVBuAvB⟨“uXv”⟩𝒢G⟨“UXV”⟩𝒢G
25 9 10 24 syl2anc φuAvB⟨“uXv”⟩𝒢G⟨“UXV”⟩𝒢G
26 13 25 mpd φ⟨“UXV”⟩𝒢G