| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isperp.p |
|
| 2 |
|
isperp.d |
|
| 3 |
|
isperp.i |
|
| 4 |
|
isperp.l |
|
| 5 |
|
isperp.g |
|
| 6 |
|
isperp.a |
|
| 7 |
|
ragperp.b |
|
| 8 |
|
ragperp.x |
|
| 9 |
|
ragperp.u |
|
| 10 |
|
ragperp.v |
|
| 11 |
|
ragperp.1 |
|
| 12 |
|
ragperp.2 |
|
| 13 |
|
ragperp.r |
|
| 14 |
|
eqid |
|
| 15 |
5
|
adantr |
|
| 16 |
7
|
adantr |
|
| 17 |
|
simprr |
|
| 18 |
1 4 3 15 16 17
|
tglnpt |
|
| 19 |
6
|
adantr |
|
| 20 |
8
|
elin1d |
|
| 21 |
20
|
adantr |
|
| 22 |
1 4 3 15 19 21
|
tglnpt |
|
| 23 |
|
simprl |
|
| 24 |
1 4 3 15 19 23
|
tglnpt |
|
| 25 |
10
|
adantr |
|
| 26 |
1 4 3 15 16 25
|
tglnpt |
|
| 27 |
9
|
adantr |
|
| 28 |
1 4 3 15 19 27
|
tglnpt |
|
| 29 |
13
|
adantr |
|
| 30 |
11
|
adantr |
|
| 31 |
9
|
ad2antrr |
|
| 32 |
5
|
ad2antrr |
|
| 33 |
22
|
adantr |
|
| 34 |
24
|
adantr |
|
| 35 |
|
simpr |
|
| 36 |
35
|
neqned |
|
| 37 |
6
|
ad2antrr |
|
| 38 |
20
|
ad2antrr |
|
| 39 |
23
|
adantr |
|
| 40 |
1 3 4 32 33 34 36 36 37 38 39
|
tglinethru |
|
| 41 |
31 40
|
eleqtrd |
|
| 42 |
41
|
ex |
|
| 43 |
42
|
orrd |
|
| 44 |
43
|
orcomd |
|
| 45 |
1 2 3 4 14 15 28 22 26 24 29 30 44
|
ragcol |
|
| 46 |
1 2 3 4 14 15 24 22 26 45
|
ragcom |
|
| 47 |
12
|
adantr |
|
| 48 |
10
|
ad2antrr |
|
| 49 |
5
|
ad2antrr |
|
| 50 |
22
|
adantr |
|
| 51 |
18
|
adantr |
|
| 52 |
|
simpr |
|
| 53 |
52
|
neqned |
|
| 54 |
7
|
ad2antrr |
|
| 55 |
8
|
elin2d |
|
| 56 |
55
|
ad2antrr |
|
| 57 |
17
|
adantr |
|
| 58 |
1 3 4 49 50 51 53 53 54 56 57
|
tglinethru |
|
| 59 |
48 58
|
eleqtrd |
|
| 60 |
59
|
ex |
|
| 61 |
60
|
orrd |
|
| 62 |
61
|
orcomd |
|
| 63 |
1 2 3 4 14 15 26 22 24 18 46 47 62
|
ragcol |
|
| 64 |
1 2 3 4 14 15 18 22 24 63
|
ragcom |
|
| 65 |
64
|
ralrimivva |
|
| 66 |
1 2 3 4 5 6 7 8
|
isperp2 |
|
| 67 |
65 66
|
mpbird |
|