| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isperp.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
isperp.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
isperp.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
isperp.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
isperp.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 6 |
|
isperp.a |
⊢ ( 𝜑 → 𝐴 ∈ ran 𝐿 ) |
| 7 |
|
ragperp.b |
⊢ ( 𝜑 → 𝐵 ∈ ran 𝐿 ) |
| 8 |
|
ragperp.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 9 |
|
ragperp.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
| 10 |
|
ragperp.v |
⊢ ( 𝜑 → 𝑉 ∈ 𝐵 ) |
| 11 |
|
ragperp.1 |
⊢ ( 𝜑 → 𝑈 ≠ 𝑋 ) |
| 12 |
|
ragperp.2 |
⊢ ( 𝜑 → 𝑉 ≠ 𝑋 ) |
| 13 |
|
ragperp.r |
⊢ ( 𝜑 → 〈“ 𝑈 𝑋 𝑉 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 14 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
| 15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 16 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝐵 ∈ ran 𝐿 ) |
| 17 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑣 ∈ 𝐵 ) |
| 18 |
1 4 3 15 16 17
|
tglnpt |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑣 ∈ 𝑃 ) |
| 19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝐴 ∈ ran 𝐿 ) |
| 20 |
8
|
elin1d |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐴 ) |
| 22 |
1 4 3 15 19 21
|
tglnpt |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑋 ∈ 𝑃 ) |
| 23 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑢 ∈ 𝐴 ) |
| 24 |
1 4 3 15 19 23
|
tglnpt |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑢 ∈ 𝑃 ) |
| 25 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑉 ∈ 𝐵 ) |
| 26 |
1 4 3 15 16 25
|
tglnpt |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑉 ∈ 𝑃 ) |
| 27 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑈 ∈ 𝐴 ) |
| 28 |
1 4 3 15 19 27
|
tglnpt |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑈 ∈ 𝑃 ) |
| 29 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 〈“ 𝑈 𝑋 𝑉 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 30 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑈 ≠ 𝑋 ) |
| 31 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝑈 ∈ 𝐴 ) |
| 32 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝐺 ∈ TarskiG ) |
| 33 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝑋 ∈ 𝑃 ) |
| 34 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝑢 ∈ 𝑃 ) |
| 35 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → ¬ 𝑋 = 𝑢 ) |
| 36 |
35
|
neqned |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝑋 ≠ 𝑢 ) |
| 37 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝐴 ∈ ran 𝐿 ) |
| 38 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝑋 ∈ 𝐴 ) |
| 39 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝑢 ∈ 𝐴 ) |
| 40 |
1 3 4 32 33 34 36 36 37 38 39
|
tglinethru |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝐴 = ( 𝑋 𝐿 𝑢 ) ) |
| 41 |
31 40
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝑈 ∈ ( 𝑋 𝐿 𝑢 ) ) |
| 42 |
41
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → ( ¬ 𝑋 = 𝑢 → 𝑈 ∈ ( 𝑋 𝐿 𝑢 ) ) ) |
| 43 |
42
|
orrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑋 = 𝑢 ∨ 𝑈 ∈ ( 𝑋 𝐿 𝑢 ) ) ) |
| 44 |
43
|
orcomd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑈 ∈ ( 𝑋 𝐿 𝑢 ) ∨ 𝑋 = 𝑢 ) ) |
| 45 |
1 2 3 4 14 15 28 22 26 24 29 30 44
|
ragcol |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 〈“ 𝑢 𝑋 𝑉 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 46 |
1 2 3 4 14 15 24 22 26 45
|
ragcom |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 〈“ 𝑉 𝑋 𝑢 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 47 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑉 ≠ 𝑋 ) |
| 48 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝑉 ∈ 𝐵 ) |
| 49 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝐺 ∈ TarskiG ) |
| 50 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝑋 ∈ 𝑃 ) |
| 51 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝑣 ∈ 𝑃 ) |
| 52 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → ¬ 𝑋 = 𝑣 ) |
| 53 |
52
|
neqned |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝑋 ≠ 𝑣 ) |
| 54 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝐵 ∈ ran 𝐿 ) |
| 55 |
8
|
elin2d |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 56 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝑋 ∈ 𝐵 ) |
| 57 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝑣 ∈ 𝐵 ) |
| 58 |
1 3 4 49 50 51 53 53 54 56 57
|
tglinethru |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝐵 = ( 𝑋 𝐿 𝑣 ) ) |
| 59 |
48 58
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝑉 ∈ ( 𝑋 𝐿 𝑣 ) ) |
| 60 |
59
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → ( ¬ 𝑋 = 𝑣 → 𝑉 ∈ ( 𝑋 𝐿 𝑣 ) ) ) |
| 61 |
60
|
orrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑋 = 𝑣 ∨ 𝑉 ∈ ( 𝑋 𝐿 𝑣 ) ) ) |
| 62 |
61
|
orcomd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑉 ∈ ( 𝑋 𝐿 𝑣 ) ∨ 𝑋 = 𝑣 ) ) |
| 63 |
1 2 3 4 14 15 26 22 24 18 46 47 62
|
ragcol |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 〈“ 𝑣 𝑋 𝑢 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 64 |
1 2 3 4 14 15 18 22 24 63
|
ragcom |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 〈“ 𝑢 𝑋 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 65 |
64
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 〈“ 𝑢 𝑋 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 66 |
1 2 3 4 5 6 7 8
|
isperp2 |
⊢ ( 𝜑 → ( 𝐴 ( ⟂G ‘ 𝐺 ) 𝐵 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 〈“ 𝑢 𝑋 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) ) |
| 67 |
65 66
|
mpbird |
⊢ ( 𝜑 → 𝐴 ( ⟂G ‘ 𝐺 ) 𝐵 ) |