Step |
Hyp |
Ref |
Expression |
1 |
|
isperp.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
isperp.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
isperp.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
isperp.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
isperp.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
6 |
|
isperp.a |
⊢ ( 𝜑 → 𝐴 ∈ ran 𝐿 ) |
7 |
|
ragperp.b |
⊢ ( 𝜑 → 𝐵 ∈ ran 𝐿 ) |
8 |
|
ragperp.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 ∩ 𝐵 ) ) |
9 |
|
ragperp.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
10 |
|
ragperp.v |
⊢ ( 𝜑 → 𝑉 ∈ 𝐵 ) |
11 |
|
ragperp.1 |
⊢ ( 𝜑 → 𝑈 ≠ 𝑋 ) |
12 |
|
ragperp.2 |
⊢ ( 𝜑 → 𝑉 ≠ 𝑋 ) |
13 |
|
ragperp.r |
⊢ ( 𝜑 → 〈“ 𝑈 𝑋 𝑉 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
14 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
16 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝐵 ∈ ran 𝐿 ) |
17 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑣 ∈ 𝐵 ) |
18 |
1 4 3 15 16 17
|
tglnpt |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑣 ∈ 𝑃 ) |
19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝐴 ∈ ran 𝐿 ) |
20 |
8
|
elin1d |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐴 ) |
22 |
1 4 3 15 19 21
|
tglnpt |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑋 ∈ 𝑃 ) |
23 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑢 ∈ 𝐴 ) |
24 |
1 4 3 15 19 23
|
tglnpt |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑢 ∈ 𝑃 ) |
25 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑉 ∈ 𝐵 ) |
26 |
1 4 3 15 16 25
|
tglnpt |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑉 ∈ 𝑃 ) |
27 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑈 ∈ 𝐴 ) |
28 |
1 4 3 15 19 27
|
tglnpt |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑈 ∈ 𝑃 ) |
29 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 〈“ 𝑈 𝑋 𝑉 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
30 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑈 ≠ 𝑋 ) |
31 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝑈 ∈ 𝐴 ) |
32 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝐺 ∈ TarskiG ) |
33 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝑋 ∈ 𝑃 ) |
34 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝑢 ∈ 𝑃 ) |
35 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → ¬ 𝑋 = 𝑢 ) |
36 |
35
|
neqned |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝑋 ≠ 𝑢 ) |
37 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝐴 ∈ ran 𝐿 ) |
38 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝑋 ∈ 𝐴 ) |
39 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝑢 ∈ 𝐴 ) |
40 |
1 3 4 32 33 34 36 36 37 38 39
|
tglinethru |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝐴 = ( 𝑋 𝐿 𝑢 ) ) |
41 |
31 40
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑢 ) → 𝑈 ∈ ( 𝑋 𝐿 𝑢 ) ) |
42 |
41
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → ( ¬ 𝑋 = 𝑢 → 𝑈 ∈ ( 𝑋 𝐿 𝑢 ) ) ) |
43 |
42
|
orrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑋 = 𝑢 ∨ 𝑈 ∈ ( 𝑋 𝐿 𝑢 ) ) ) |
44 |
43
|
orcomd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑈 ∈ ( 𝑋 𝐿 𝑢 ) ∨ 𝑋 = 𝑢 ) ) |
45 |
1 2 3 4 14 15 28 22 26 24 29 30 44
|
ragcol |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 〈“ 𝑢 𝑋 𝑉 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
46 |
1 2 3 4 14 15 24 22 26 45
|
ragcom |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 〈“ 𝑉 𝑋 𝑢 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
47 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑉 ≠ 𝑋 ) |
48 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝑉 ∈ 𝐵 ) |
49 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝐺 ∈ TarskiG ) |
50 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝑋 ∈ 𝑃 ) |
51 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝑣 ∈ 𝑃 ) |
52 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → ¬ 𝑋 = 𝑣 ) |
53 |
52
|
neqned |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝑋 ≠ 𝑣 ) |
54 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝐵 ∈ ran 𝐿 ) |
55 |
8
|
elin2d |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
56 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝑋 ∈ 𝐵 ) |
57 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝑣 ∈ 𝐵 ) |
58 |
1 3 4 49 50 51 53 53 54 56 57
|
tglinethru |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝐵 = ( 𝑋 𝐿 𝑣 ) ) |
59 |
48 58
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ¬ 𝑋 = 𝑣 ) → 𝑉 ∈ ( 𝑋 𝐿 𝑣 ) ) |
60 |
59
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → ( ¬ 𝑋 = 𝑣 → 𝑉 ∈ ( 𝑋 𝐿 𝑣 ) ) ) |
61 |
60
|
orrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑋 = 𝑣 ∨ 𝑉 ∈ ( 𝑋 𝐿 𝑣 ) ) ) |
62 |
61
|
orcomd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑉 ∈ ( 𝑋 𝐿 𝑣 ) ∨ 𝑋 = 𝑣 ) ) |
63 |
1 2 3 4 14 15 26 22 24 18 46 47 62
|
ragcol |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 〈“ 𝑣 𝑋 𝑢 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
64 |
1 2 3 4 14 15 18 22 24 63
|
ragcom |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) → 〈“ 𝑢 𝑋 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
65 |
64
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 〈“ 𝑢 𝑋 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
66 |
1 2 3 4 5 6 7 8
|
isperp2 |
⊢ ( 𝜑 → ( 𝐴 ( ⟂G ‘ 𝐺 ) 𝐵 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐵 〈“ 𝑢 𝑋 𝑣 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) ) |
67 |
65 66
|
mpbird |
⊢ ( 𝜑 → 𝐴 ( ⟂G ‘ 𝐺 ) 𝐵 ) |