Step |
Hyp |
Ref |
Expression |
1 |
|
isperp.p |
|
2 |
|
isperp.d |
|
3 |
|
isperp.i |
|
4 |
|
isperp.l |
|
5 |
|
isperp.g |
|
6 |
|
isperp.a |
|
7 |
|
isperp2.b |
|
8 |
|
isperp2.x |
|
9 |
|
eqidd |
|
10 |
5
|
ad4antr |
|
11 |
6
|
ad4antr |
|
12 |
7
|
ad4antr |
|
13 |
|
simp-4r |
|
14 |
1 2 3 4 10 11 12 13
|
perpneq |
|
15 |
|
simpllr |
|
16 |
8
|
ad4antr |
|
17 |
1 3 4 10 11 12 14 15 16
|
tglineineq |
|
18 |
|
eqidd |
|
19 |
9 17 18
|
s3eqd |
|
20 |
19
|
eleq1d |
|
21 |
20
|
biimpd |
|
22 |
21
|
ralimdva |
|
23 |
22
|
ralimdva |
|
24 |
23
|
imp |
|
25 |
1 2 3 4 5 6 7
|
isperp |
|
26 |
25
|
biimpa |
|
27 |
24 26
|
r19.29a |
|
28 |
|
s3eq2 |
|
29 |
28
|
eleq1d |
|
30 |
29
|
2ralbidv |
|
31 |
30
|
rspcev |
|
32 |
8 31
|
sylan |
|
33 |
25
|
adantr |
|
34 |
32 33
|
mpbird |
|
35 |
27 34
|
impbida |
|