| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isperp.p |
|
| 2 |
|
isperp.d |
|
| 3 |
|
isperp.i |
|
| 4 |
|
isperp.l |
|
| 5 |
|
isperp.g |
|
| 6 |
|
isperp.a |
|
| 7 |
|
isperp.b |
|
| 8 |
|
perpcom.1 |
|
| 9 |
5
|
adantr |
|
| 10 |
9
|
ad5antr |
|
| 11 |
5
|
ad5antr |
|
| 12 |
6
|
ad5antr |
|
| 13 |
|
simpr |
|
| 14 |
13
|
elin1d |
|
| 15 |
14
|
ad4antr |
|
| 16 |
1 4 3 11 12 15
|
tglnpt |
|
| 17 |
16
|
adantl4r |
|
| 18 |
7
|
ad5antr |
|
| 19 |
|
simplr |
|
| 20 |
1 4 3 11 18 19
|
tglnpt |
|
| 21 |
20
|
adantl4r |
|
| 22 |
|
simp-4r |
|
| 23 |
1 4 3 11 12 22
|
tglnpt |
|
| 24 |
23
|
adantl4r |
|
| 25 |
|
eqid |
|
| 26 |
|
simp-4r |
|
| 27 |
|
simplr |
|
| 28 |
|
simp-5r |
|
| 29 |
|
id |
|
| 30 |
|
eqidd |
|
| 31 |
|
eqidd |
|
| 32 |
29 30 31
|
s3eqd |
|
| 33 |
32
|
eleq1d |
|
| 34 |
|
eqidd |
|
| 35 |
|
eqidd |
|
| 36 |
|
id |
|
| 37 |
34 35 36
|
s3eqd |
|
| 38 |
37
|
eleq1d |
|
| 39 |
33 38
|
rspc2va |
|
| 40 |
26 27 28 39
|
syl21anc |
|
| 41 |
|
simpllr |
|
| 42 |
41
|
necomd |
|
| 43 |
42
|
adantl4r |
|
| 44 |
|
simpr |
|
| 45 |
44
|
necomd |
|
| 46 |
45
|
adantl4r |
|
| 47 |
1 2 3 4 25 10 24 17 21 40 43 46
|
ragncol |
|
| 48 |
1 4 3 10 24 17 21 47
|
ncolrot2 |
|
| 49 |
1 3 4 10 17 21 24 17 48
|
tglineneq |
|
| 50 |
49
|
necomd |
|
| 51 |
1 3 4 11 23 16 42 42 12 22 15
|
tglinethru |
|
| 52 |
51
|
adantl4r |
|
| 53 |
13
|
elin2d |
|
| 54 |
53
|
ad4antr |
|
| 55 |
1 3 4 11 16 20 44 44 18 54 19
|
tglinethru |
|
| 56 |
55
|
adantl4r |
|
| 57 |
50 52 56
|
3netr4d |
|
| 58 |
7
|
adantr |
|
| 59 |
1 3 4 9 58 53
|
tglnpt2 |
|
| 60 |
59
|
ad3antrrr |
|
| 61 |
57 60
|
r19.29a |
|
| 62 |
6
|
adantr |
|
| 63 |
1 3 4 9 62 14
|
tglnpt2 |
|
| 64 |
63
|
adantr |
|
| 65 |
61 64
|
r19.29a |
|
| 66 |
1 2 3 4 5 6 7
|
isperp |
|
| 67 |
8 66
|
mpbid |
|
| 68 |
65 67
|
r19.29a |
|