Metamath Proof Explorer


Theorem ragncol

Description: Right angle implies non-colinearity. A consequence of theorem 8.9 of Schwabhauser p. 58. (Contributed by Thierry Arnoux, 1-Dec-2019)

Ref Expression
Hypotheses israg.p P = Base G
israg.d - ˙ = dist G
israg.i I = Itv G
israg.l L = Line 𝒢 G
israg.s S = pInv 𝒢 G
israg.g φ G 𝒢 Tarski
israg.a φ A P
israg.b φ B P
israg.c φ C P
ragncol.1 φ ⟨“ ABC ”⟩ 𝒢 G
ragncol.2 φ A B
ragncol.3 φ C B
Assertion ragncol φ ¬ C A L B A = B

Proof

Step Hyp Ref Expression
1 israg.p P = Base G
2 israg.d - ˙ = dist G
3 israg.i I = Itv G
4 israg.l L = Line 𝒢 G
5 israg.s S = pInv 𝒢 G
6 israg.g φ G 𝒢 Tarski
7 israg.a φ A P
8 israg.b φ B P
9 israg.c φ C P
10 ragncol.1 φ ⟨“ ABC ”⟩ 𝒢 G
11 ragncol.2 φ A B
12 ragncol.3 φ C B
13 11 neneqd φ ¬ A = B
14 12 neneqd φ ¬ C = B
15 ioran ¬ A = B C = B ¬ A = B ¬ C = B
16 13 14 15 sylanbrc φ ¬ A = B C = B
17 6 adantr φ C A L B A = B G 𝒢 Tarski
18 7 adantr φ C A L B A = B A P
19 8 adantr φ C A L B A = B B P
20 9 adantr φ C A L B A = B C P
21 10 adantr φ C A L B A = B ⟨“ ABC ”⟩ 𝒢 G
22 simpr φ C A L B A = B C A L B A = B
23 1 2 3 4 5 17 18 19 20 21 22 ragflat3 φ C A L B A = B A = B C = B
24 16 23 mtand φ ¬ C A L B A = B