Description: Right angle and colinearity. Theorem 8.9 of Schwabhauser p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | israg.p | |
|
israg.d | |
||
israg.i | |
||
israg.l | |
||
israg.s | |
||
israg.g | |
||
israg.a | |
||
israg.b | |
||
israg.c | |
||
ragflat3.1 | |
||
ragflat3.2 | |
||
Assertion | ragflat3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | israg.p | |
|
2 | israg.d | |
|
3 | israg.i | |
|
4 | israg.l | |
|
5 | israg.s | |
|
6 | israg.g | |
|
7 | israg.a | |
|
8 | israg.b | |
|
9 | israg.c | |
|
10 | ragflat3.1 | |
|
11 | ragflat3.2 | |
|
12 | 6 | adantr | |
13 | 9 | adantr | |
14 | 8 | adantr | |
15 | 7 | adantr | |
16 | 10 | adantr | |
17 | simpr | |
|
18 | 17 | neqned | |
19 | 11 | adantr | |
20 | 1 4 3 12 15 14 13 19 | colrot1 | |
21 | 1 2 3 4 5 12 15 14 13 13 16 18 20 | ragcol | |
22 | 1 2 3 4 5 12 13 14 15 21 | ragtriva | |
23 | 22 | ex | |
24 | 23 | orrd | |