Metamath Proof Explorer


Theorem ragflat3

Description: Right angle and colinearity. Theorem 8.9 of Schwabhauser p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019)

Ref Expression
Hypotheses israg.p P=BaseG
israg.d -˙=distG
israg.i I=ItvG
israg.l L=Line𝒢G
israg.s S=pInv𝒢G
israg.g φG𝒢Tarski
israg.a φAP
israg.b φBP
israg.c φCP
ragflat3.1 φ⟨“ABC”⟩𝒢G
ragflat3.2 φCALBA=B
Assertion ragflat3 φA=BC=B

Proof

Step Hyp Ref Expression
1 israg.p P=BaseG
2 israg.d -˙=distG
3 israg.i I=ItvG
4 israg.l L=Line𝒢G
5 israg.s S=pInv𝒢G
6 israg.g φG𝒢Tarski
7 israg.a φAP
8 israg.b φBP
9 israg.c φCP
10 ragflat3.1 φ⟨“ABC”⟩𝒢G
11 ragflat3.2 φCALBA=B
12 6 adantr φ¬A=BG𝒢Tarski
13 9 adantr φ¬A=BCP
14 8 adantr φ¬A=BBP
15 7 adantr φ¬A=BAP
16 10 adantr φ¬A=B⟨“ABC”⟩𝒢G
17 simpr φ¬A=B¬A=B
18 17 neqned φ¬A=BAB
19 11 adantr φ¬A=BCALBA=B
20 1 4 3 12 15 14 13 19 colrot1 φ¬A=BABLCB=C
21 1 2 3 4 5 12 15 14 13 13 16 18 20 ragcol φ¬A=B⟨“CBC”⟩𝒢G
22 1 2 3 4 5 12 13 14 15 21 ragtriva φ¬A=BC=B
23 22 ex φ¬A=BC=B
24 23 orrd φA=BC=B