Metamath Proof Explorer


Theorem ragncol

Description: Right angle implies non-colinearity. A consequence of theorem 8.9 of Schwabhauser p. 58. (Contributed by Thierry Arnoux, 1-Dec-2019)

Ref Expression
Hypotheses israg.p 𝑃 = ( Base ‘ 𝐺 )
israg.d = ( dist ‘ 𝐺 )
israg.i 𝐼 = ( Itv ‘ 𝐺 )
israg.l 𝐿 = ( LineG ‘ 𝐺 )
israg.s 𝑆 = ( pInvG ‘ 𝐺 )
israg.g ( 𝜑𝐺 ∈ TarskiG )
israg.a ( 𝜑𝐴𝑃 )
israg.b ( 𝜑𝐵𝑃 )
israg.c ( 𝜑𝐶𝑃 )
ragncol.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
ragncol.2 ( 𝜑𝐴𝐵 )
ragncol.3 ( 𝜑𝐶𝐵 )
Assertion ragncol ( 𝜑 → ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 israg.p 𝑃 = ( Base ‘ 𝐺 )
2 israg.d = ( dist ‘ 𝐺 )
3 israg.i 𝐼 = ( Itv ‘ 𝐺 )
4 israg.l 𝐿 = ( LineG ‘ 𝐺 )
5 israg.s 𝑆 = ( pInvG ‘ 𝐺 )
6 israg.g ( 𝜑𝐺 ∈ TarskiG )
7 israg.a ( 𝜑𝐴𝑃 )
8 israg.b ( 𝜑𝐵𝑃 )
9 israg.c ( 𝜑𝐶𝑃 )
10 ragncol.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
11 ragncol.2 ( 𝜑𝐴𝐵 )
12 ragncol.3 ( 𝜑𝐶𝐵 )
13 11 neneqd ( 𝜑 → ¬ 𝐴 = 𝐵 )
14 12 neneqd ( 𝜑 → ¬ 𝐶 = 𝐵 )
15 ioran ( ¬ ( 𝐴 = 𝐵𝐶 = 𝐵 ) ↔ ( ¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐵 ) )
16 13 14 15 sylanbrc ( 𝜑 → ¬ ( 𝐴 = 𝐵𝐶 = 𝐵 ) )
17 6 adantr ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → 𝐺 ∈ TarskiG )
18 7 adantr ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → 𝐴𝑃 )
19 8 adantr ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → 𝐵𝑃 )
20 9 adantr ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → 𝐶𝑃 )
21 10 adantr ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
22 simpr ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) )
23 1 2 3 4 5 17 18 19 20 21 22 ragflat3 ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → ( 𝐴 = 𝐵𝐶 = 𝐵 ) )
24 16 23 mtand ( 𝜑 → ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) )