| Step | Hyp | Ref | Expression | 
						
							| 1 |  | israg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | israg.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | israg.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | israg.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | israg.s |  |-  S = ( pInvG ` G ) | 
						
							| 6 |  | israg.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 7 |  | israg.a |  |-  ( ph -> A e. P ) | 
						
							| 8 |  | israg.b |  |-  ( ph -> B e. P ) | 
						
							| 9 |  | israg.c |  |-  ( ph -> C e. P ) | 
						
							| 10 |  | ragncol.1 |  |-  ( ph -> <" A B C "> e. ( raG ` G ) ) | 
						
							| 11 |  | ragncol.2 |  |-  ( ph -> A =/= B ) | 
						
							| 12 |  | ragncol.3 |  |-  ( ph -> C =/= B ) | 
						
							| 13 | 11 | neneqd |  |-  ( ph -> -. A = B ) | 
						
							| 14 | 12 | neneqd |  |-  ( ph -> -. C = B ) | 
						
							| 15 |  | ioran |  |-  ( -. ( A = B \/ C = B ) <-> ( -. A = B /\ -. C = B ) ) | 
						
							| 16 | 13 14 15 | sylanbrc |  |-  ( ph -> -. ( A = B \/ C = B ) ) | 
						
							| 17 | 6 | adantr |  |-  ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> G e. TarskiG ) | 
						
							| 18 | 7 | adantr |  |-  ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> A e. P ) | 
						
							| 19 | 8 | adantr |  |-  ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> B e. P ) | 
						
							| 20 | 9 | adantr |  |-  ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> C e. P ) | 
						
							| 21 | 10 | adantr |  |-  ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> <" A B C "> e. ( raG ` G ) ) | 
						
							| 22 |  | simpr |  |-  ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> ( C e. ( A L B ) \/ A = B ) ) | 
						
							| 23 | 1 2 3 4 5 17 18 19 20 21 22 | ragflat3 |  |-  ( ( ph /\ ( C e. ( A L B ) \/ A = B ) ) -> ( A = B \/ C = B ) ) | 
						
							| 24 | 16 23 | mtand |  |-  ( ph -> -. ( C e. ( A L B ) \/ A = B ) ) |