| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isperp.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | isperp.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | isperp.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | isperp.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 5 |  | isperp.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 6 |  | isperp.a | ⊢ ( 𝜑  →  𝐴  ∈  ran  𝐿 ) | 
						
							| 7 |  | footne.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐴 ) | 
						
							| 8 |  | footne.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑃 ) | 
						
							| 9 |  | footne.1 | ⊢ ( 𝜑  →  ( 𝑋 𝐿 𝑌 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) | 
						
							| 10 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  𝐴 )  →  𝐺  ∈  TarskiG ) | 
						
							| 11 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  𝐴 )  →  𝐴  ∈  ran  𝐿 ) | 
						
							| 12 | 4 5 9 | perpln1 | ⊢ ( 𝜑  →  ( 𝑋 𝐿 𝑌 )  ∈  ran  𝐿 ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  𝐴 )  →  ( 𝑋 𝐿 𝑌 )  ∈  ran  𝐿 ) | 
						
							| 14 | 1 2 3 4 5 12 6 9 | perpneq | ⊢ ( 𝜑  →  ( 𝑋 𝐿 𝑌 )  ≠  𝐴 ) | 
						
							| 15 | 14 | necomd | ⊢ ( 𝜑  →  𝐴  ≠  ( 𝑋 𝐿 𝑌 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  𝐴 )  →  𝐴  ≠  ( 𝑋 𝐿 𝑌 ) ) | 
						
							| 17 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  𝐴 )  →  𝑋  ∈  𝐴 ) | 
						
							| 18 | 1 4 3 5 6 7 | tglnpt | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 19 | 1 3 4 5 18 8 12 | tglnne | ⊢ ( 𝜑  →  𝑋  ≠  𝑌 ) | 
						
							| 20 | 1 3 4 5 18 8 19 | tglinerflx1 | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑋 𝐿 𝑌 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  𝐴 )  →  𝑋  ∈  ( 𝑋 𝐿 𝑌 ) ) | 
						
							| 22 | 17 21 | elind | ⊢ ( ( 𝜑  ∧  𝑌  ∈  𝐴 )  →  𝑋  ∈  ( 𝐴  ∩  ( 𝑋 𝐿 𝑌 ) ) ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  𝐴 )  →  𝑌  ∈  𝐴 ) | 
						
							| 24 | 1 3 4 5 18 8 19 | tglinerflx2 | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑋 𝐿 𝑌 ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  𝐴 )  →  𝑌  ∈  ( 𝑋 𝐿 𝑌 ) ) | 
						
							| 26 | 23 25 | elind | ⊢ ( ( 𝜑  ∧  𝑌  ∈  𝐴 )  →  𝑌  ∈  ( 𝐴  ∩  ( 𝑋 𝐿 𝑌 ) ) ) | 
						
							| 27 | 1 3 4 10 11 13 16 22 26 | tglineineq | ⊢ ( ( 𝜑  ∧  𝑌  ∈  𝐴 )  →  𝑋  =  𝑌 ) | 
						
							| 28 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ∈  𝐴 )  →  𝑋  ≠  𝑌 ) | 
						
							| 29 | 27 28 | pm2.21ddne | ⊢ ( ( 𝜑  ∧  𝑌  ∈  𝐴 )  →  ¬  𝑌  ∈  𝐴 ) | 
						
							| 30 | 29 | pm2.01da | ⊢ ( 𝜑  →  ¬  𝑌  ∈  𝐴 ) |