Metamath Proof Explorer


Theorem footne

Description: Uniqueness of the foot point. (Contributed by Thierry Arnoux, 28-Feb-2020)

Ref Expression
Hypotheses isperp.p 𝑃 = ( Base ‘ 𝐺 )
isperp.d = ( dist ‘ 𝐺 )
isperp.i 𝐼 = ( Itv ‘ 𝐺 )
isperp.l 𝐿 = ( LineG ‘ 𝐺 )
isperp.g ( 𝜑𝐺 ∈ TarskiG )
isperp.a ( 𝜑𝐴 ∈ ran 𝐿 )
footne.x ( 𝜑𝑋𝐴 )
footne.y ( 𝜑𝑌𝑃 )
footne.1 ( 𝜑 → ( 𝑋 𝐿 𝑌 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
Assertion footne ( 𝜑 → ¬ 𝑌𝐴 )

Proof

Step Hyp Ref Expression
1 isperp.p 𝑃 = ( Base ‘ 𝐺 )
2 isperp.d = ( dist ‘ 𝐺 )
3 isperp.i 𝐼 = ( Itv ‘ 𝐺 )
4 isperp.l 𝐿 = ( LineG ‘ 𝐺 )
5 isperp.g ( 𝜑𝐺 ∈ TarskiG )
6 isperp.a ( 𝜑𝐴 ∈ ran 𝐿 )
7 footne.x ( 𝜑𝑋𝐴 )
8 footne.y ( 𝜑𝑌𝑃 )
9 footne.1 ( 𝜑 → ( 𝑋 𝐿 𝑌 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
10 5 adantr ( ( 𝜑𝑌𝐴 ) → 𝐺 ∈ TarskiG )
11 6 adantr ( ( 𝜑𝑌𝐴 ) → 𝐴 ∈ ran 𝐿 )
12 4 5 9 perpln1 ( 𝜑 → ( 𝑋 𝐿 𝑌 ) ∈ ran 𝐿 )
13 12 adantr ( ( 𝜑𝑌𝐴 ) → ( 𝑋 𝐿 𝑌 ) ∈ ran 𝐿 )
14 1 2 3 4 5 12 6 9 perpneq ( 𝜑 → ( 𝑋 𝐿 𝑌 ) ≠ 𝐴 )
15 14 necomd ( 𝜑𝐴 ≠ ( 𝑋 𝐿 𝑌 ) )
16 15 adantr ( ( 𝜑𝑌𝐴 ) → 𝐴 ≠ ( 𝑋 𝐿 𝑌 ) )
17 7 adantr ( ( 𝜑𝑌𝐴 ) → 𝑋𝐴 )
18 1 4 3 5 6 7 tglnpt ( 𝜑𝑋𝑃 )
19 1 3 4 5 18 8 12 tglnne ( 𝜑𝑋𝑌 )
20 1 3 4 5 18 8 19 tglinerflx1 ( 𝜑𝑋 ∈ ( 𝑋 𝐿 𝑌 ) )
21 20 adantr ( ( 𝜑𝑌𝐴 ) → 𝑋 ∈ ( 𝑋 𝐿 𝑌 ) )
22 17 21 elind ( ( 𝜑𝑌𝐴 ) → 𝑋 ∈ ( 𝐴 ∩ ( 𝑋 𝐿 𝑌 ) ) )
23 simpr ( ( 𝜑𝑌𝐴 ) → 𝑌𝐴 )
24 1 3 4 5 18 8 19 tglinerflx2 ( 𝜑𝑌 ∈ ( 𝑋 𝐿 𝑌 ) )
25 24 adantr ( ( 𝜑𝑌𝐴 ) → 𝑌 ∈ ( 𝑋 𝐿 𝑌 ) )
26 23 25 elind ( ( 𝜑𝑌𝐴 ) → 𝑌 ∈ ( 𝐴 ∩ ( 𝑋 𝐿 𝑌 ) ) )
27 1 3 4 10 11 13 16 22 26 tglineineq ( ( 𝜑𝑌𝐴 ) → 𝑋 = 𝑌 )
28 19 adantr ( ( 𝜑𝑌𝐴 ) → 𝑋𝑌 )
29 27 28 pm2.21ddne ( ( 𝜑𝑌𝐴 ) → ¬ 𝑌𝐴 )
30 29 pm2.01da ( 𝜑 → ¬ 𝑌𝐴 )