| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isperp.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | isperp.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | isperp.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | isperp.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | isperp.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 6 |  | isperp.a |  |-  ( ph -> A e. ran L ) | 
						
							| 7 |  | footne.x |  |-  ( ph -> X e. A ) | 
						
							| 8 |  | footne.y |  |-  ( ph -> Y e. P ) | 
						
							| 9 |  | footne.1 |  |-  ( ph -> ( X L Y ) ( perpG ` G ) A ) | 
						
							| 10 | 5 | adantr |  |-  ( ( ph /\ Y e. A ) -> G e. TarskiG ) | 
						
							| 11 | 6 | adantr |  |-  ( ( ph /\ Y e. A ) -> A e. ran L ) | 
						
							| 12 | 4 5 9 | perpln1 |  |-  ( ph -> ( X L Y ) e. ran L ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ph /\ Y e. A ) -> ( X L Y ) e. ran L ) | 
						
							| 14 | 1 2 3 4 5 12 6 9 | perpneq |  |-  ( ph -> ( X L Y ) =/= A ) | 
						
							| 15 | 14 | necomd |  |-  ( ph -> A =/= ( X L Y ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ Y e. A ) -> A =/= ( X L Y ) ) | 
						
							| 17 | 7 | adantr |  |-  ( ( ph /\ Y e. A ) -> X e. A ) | 
						
							| 18 | 1 4 3 5 6 7 | tglnpt |  |-  ( ph -> X e. P ) | 
						
							| 19 | 1 3 4 5 18 8 12 | tglnne |  |-  ( ph -> X =/= Y ) | 
						
							| 20 | 1 3 4 5 18 8 19 | tglinerflx1 |  |-  ( ph -> X e. ( X L Y ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ Y e. A ) -> X e. ( X L Y ) ) | 
						
							| 22 | 17 21 | elind |  |-  ( ( ph /\ Y e. A ) -> X e. ( A i^i ( X L Y ) ) ) | 
						
							| 23 |  | simpr |  |-  ( ( ph /\ Y e. A ) -> Y e. A ) | 
						
							| 24 | 1 3 4 5 18 8 19 | tglinerflx2 |  |-  ( ph -> Y e. ( X L Y ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ph /\ Y e. A ) -> Y e. ( X L Y ) ) | 
						
							| 26 | 23 25 | elind |  |-  ( ( ph /\ Y e. A ) -> Y e. ( A i^i ( X L Y ) ) ) | 
						
							| 27 | 1 3 4 10 11 13 16 22 26 | tglineineq |  |-  ( ( ph /\ Y e. A ) -> X = Y ) | 
						
							| 28 | 19 | adantr |  |-  ( ( ph /\ Y e. A ) -> X =/= Y ) | 
						
							| 29 | 27 28 | pm2.21ddne |  |-  ( ( ph /\ Y e. A ) -> -. Y e. A ) | 
						
							| 30 | 29 | pm2.01da |  |-  ( ph -> -. Y e. A ) |