| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isperp.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | isperp.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | isperp.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | isperp.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | isperp.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 6 |  | isperp.a |  |-  ( ph -> A e. ran L ) | 
						
							| 7 |  | footeq.x |  |-  ( ph -> X e. A ) | 
						
							| 8 |  | footeq.y |  |-  ( ph -> Y e. A ) | 
						
							| 9 |  | footeq.z |  |-  ( ph -> Z e. P ) | 
						
							| 10 |  | footeq.1 |  |-  ( ph -> ( X L Z ) ( perpG ` G ) A ) | 
						
							| 11 |  | footeq.2 |  |-  ( ph -> ( Y L Z ) ( perpG ` G ) A ) | 
						
							| 12 |  | oveq2 |  |-  ( x = X -> ( Z L x ) = ( Z L X ) ) | 
						
							| 13 | 12 | breq1d |  |-  ( x = X -> ( ( Z L x ) ( perpG ` G ) A <-> ( Z L X ) ( perpG ` G ) A ) ) | 
						
							| 14 |  | oveq2 |  |-  ( x = Y -> ( Z L x ) = ( Z L Y ) ) | 
						
							| 15 | 14 | breq1d |  |-  ( x = Y -> ( ( Z L x ) ( perpG ` G ) A <-> ( Z L Y ) ( perpG ` G ) A ) ) | 
						
							| 16 | 1 2 3 4 5 6 7 9 10 | footne |  |-  ( ph -> -. Z e. A ) | 
						
							| 17 | 1 2 3 4 5 6 9 16 | foot |  |-  ( ph -> E! x e. A ( Z L x ) ( perpG ` G ) A ) | 
						
							| 18 | 1 4 3 5 6 7 | tglnpt |  |-  ( ph -> X e. P ) | 
						
							| 19 | 4 5 10 | perpln1 |  |-  ( ph -> ( X L Z ) e. ran L ) | 
						
							| 20 | 1 3 4 5 18 9 19 | tglnne |  |-  ( ph -> X =/= Z ) | 
						
							| 21 | 1 3 4 5 18 9 20 | tglinecom |  |-  ( ph -> ( X L Z ) = ( Z L X ) ) | 
						
							| 22 | 21 10 | eqbrtrrd |  |-  ( ph -> ( Z L X ) ( perpG ` G ) A ) | 
						
							| 23 | 1 4 3 5 6 8 | tglnpt |  |-  ( ph -> Y e. P ) | 
						
							| 24 | 4 5 11 | perpln1 |  |-  ( ph -> ( Y L Z ) e. ran L ) | 
						
							| 25 | 1 3 4 5 23 9 24 | tglnne |  |-  ( ph -> Y =/= Z ) | 
						
							| 26 | 1 3 4 5 23 9 25 | tglinecom |  |-  ( ph -> ( Y L Z ) = ( Z L Y ) ) | 
						
							| 27 | 26 11 | eqbrtrrd |  |-  ( ph -> ( Z L Y ) ( perpG ` G ) A ) | 
						
							| 28 | 13 15 17 7 8 22 27 | reu2eqd |  |-  ( ph -> X = Y ) |