| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isperp.p |
|- P = ( Base ` G ) |
| 2 |
|
isperp.d |
|- .- = ( dist ` G ) |
| 3 |
|
isperp.i |
|- I = ( Itv ` G ) |
| 4 |
|
isperp.l |
|- L = ( LineG ` G ) |
| 5 |
|
isperp.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
isperp.a |
|- ( ph -> A e. ran L ) |
| 7 |
|
foot.x |
|- ( ph -> C e. P ) |
| 8 |
|
foot.y |
|- ( ph -> -. C e. A ) |
| 9 |
1 2 3 4 5 6 7 8
|
footex |
|- ( ph -> E. x e. A ( C L x ) ( perpG ` G ) A ) |
| 10 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
| 11 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> G e. TarskiG ) |
| 12 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> C e. P ) |
| 13 |
5
|
adantr |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> G e. TarskiG ) |
| 14 |
6
|
adantr |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> A e. ran L ) |
| 15 |
|
simprl |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> x e. A ) |
| 16 |
1 4 3 13 14 15
|
tglnpt |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> x e. P ) |
| 17 |
16
|
adantr |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> x e. P ) |
| 18 |
|
simprr |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> z e. A ) |
| 19 |
1 4 3 13 14 18
|
tglnpt |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> z e. P ) |
| 20 |
19
|
adantr |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> z e. P ) |
| 21 |
8
|
adantr |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> -. C e. A ) |
| 22 |
|
nelne2 |
|- ( ( x e. A /\ -. C e. A ) -> x =/= C ) |
| 23 |
15 21 22
|
syl2anc |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> x =/= C ) |
| 24 |
23
|
necomd |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> C =/= x ) |
| 25 |
24
|
adantr |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> C =/= x ) |
| 26 |
1 3 4 11 12 17 25
|
tglinerflx1 |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> C e. ( C L x ) ) |
| 27 |
18
|
adantr |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> z e. A ) |
| 28 |
|
simprl |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> ( C L x ) ( perpG ` G ) A ) |
| 29 |
7
|
adantr |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> C e. P ) |
| 30 |
1 3 4 13 29 16 24
|
tgelrnln |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> ( C L x ) e. ran L ) |
| 31 |
1 3 4 13 29 16 24
|
tglinerflx2 |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> x e. ( C L x ) ) |
| 32 |
31 15
|
elind |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> x e. ( ( C L x ) i^i A ) ) |
| 33 |
1 2 3 4 13 30 14 32
|
isperp2 |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> ( ( C L x ) ( perpG ` G ) A <-> A. u e. ( C L x ) A. v e. A <" u x v "> e. ( raG ` G ) ) ) |
| 34 |
33
|
adantr |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> ( ( C L x ) ( perpG ` G ) A <-> A. u e. ( C L x ) A. v e. A <" u x v "> e. ( raG ` G ) ) ) |
| 35 |
28 34
|
mpbid |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> A. u e. ( C L x ) A. v e. A <" u x v "> e. ( raG ` G ) ) |
| 36 |
|
id |
|- ( u = C -> u = C ) |
| 37 |
|
eqidd |
|- ( u = C -> x = x ) |
| 38 |
|
eqidd |
|- ( u = C -> v = v ) |
| 39 |
36 37 38
|
s3eqd |
|- ( u = C -> <" u x v "> = <" C x v "> ) |
| 40 |
39
|
eleq1d |
|- ( u = C -> ( <" u x v "> e. ( raG ` G ) <-> <" C x v "> e. ( raG ` G ) ) ) |
| 41 |
|
eqidd |
|- ( v = z -> C = C ) |
| 42 |
|
eqidd |
|- ( v = z -> x = x ) |
| 43 |
|
id |
|- ( v = z -> v = z ) |
| 44 |
41 42 43
|
s3eqd |
|- ( v = z -> <" C x v "> = <" C x z "> ) |
| 45 |
44
|
eleq1d |
|- ( v = z -> ( <" C x v "> e. ( raG ` G ) <-> <" C x z "> e. ( raG ` G ) ) ) |
| 46 |
40 45
|
rspc2va |
|- ( ( ( C e. ( C L x ) /\ z e. A ) /\ A. u e. ( C L x ) A. v e. A <" u x v "> e. ( raG ` G ) ) -> <" C x z "> e. ( raG ` G ) ) |
| 47 |
26 27 35 46
|
syl21anc |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> <" C x z "> e. ( raG ` G ) ) |
| 48 |
|
nelne2 |
|- ( ( z e. A /\ -. C e. A ) -> z =/= C ) |
| 49 |
18 21 48
|
syl2anc |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> z =/= C ) |
| 50 |
49
|
necomd |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> C =/= z ) |
| 51 |
50
|
adantr |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> C =/= z ) |
| 52 |
1 3 4 11 12 20 51
|
tglinerflx1 |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> C e. ( C L z ) ) |
| 53 |
15
|
adantr |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> x e. A ) |
| 54 |
|
simprr |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> ( C L z ) ( perpG ` G ) A ) |
| 55 |
1 3 4 13 29 19 50
|
tgelrnln |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> ( C L z ) e. ran L ) |
| 56 |
1 3 4 13 29 19 50
|
tglinerflx2 |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> z e. ( C L z ) ) |
| 57 |
56 18
|
elind |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> z e. ( ( C L z ) i^i A ) ) |
| 58 |
1 2 3 4 13 55 14 57
|
isperp2 |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> ( ( C L z ) ( perpG ` G ) A <-> A. u e. ( C L z ) A. v e. A <" u z v "> e. ( raG ` G ) ) ) |
| 59 |
58
|
adantr |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> ( ( C L z ) ( perpG ` G ) A <-> A. u e. ( C L z ) A. v e. A <" u z v "> e. ( raG ` G ) ) ) |
| 60 |
54 59
|
mpbid |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> A. u e. ( C L z ) A. v e. A <" u z v "> e. ( raG ` G ) ) |
| 61 |
|
eqidd |
|- ( u = C -> z = z ) |
| 62 |
36 61 38
|
s3eqd |
|- ( u = C -> <" u z v "> = <" C z v "> ) |
| 63 |
62
|
eleq1d |
|- ( u = C -> ( <" u z v "> e. ( raG ` G ) <-> <" C z v "> e. ( raG ` G ) ) ) |
| 64 |
|
eqidd |
|- ( v = x -> C = C ) |
| 65 |
|
eqidd |
|- ( v = x -> z = z ) |
| 66 |
|
id |
|- ( v = x -> v = x ) |
| 67 |
64 65 66
|
s3eqd |
|- ( v = x -> <" C z v "> = <" C z x "> ) |
| 68 |
67
|
eleq1d |
|- ( v = x -> ( <" C z v "> e. ( raG ` G ) <-> <" C z x "> e. ( raG ` G ) ) ) |
| 69 |
63 68
|
rspc2va |
|- ( ( ( C e. ( C L z ) /\ x e. A ) /\ A. u e. ( C L z ) A. v e. A <" u z v "> e. ( raG ` G ) ) -> <" C z x "> e. ( raG ` G ) ) |
| 70 |
52 53 60 69
|
syl21anc |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> <" C z x "> e. ( raG ` G ) ) |
| 71 |
1 2 3 4 10 11 12 17 20 47 70
|
ragflat |
|- ( ( ( ph /\ ( x e. A /\ z e. A ) ) /\ ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) ) -> x = z ) |
| 72 |
71
|
ex |
|- ( ( ph /\ ( x e. A /\ z e. A ) ) -> ( ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) -> x = z ) ) |
| 73 |
72
|
ralrimivva |
|- ( ph -> A. x e. A A. z e. A ( ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) -> x = z ) ) |
| 74 |
|
oveq2 |
|- ( x = z -> ( C L x ) = ( C L z ) ) |
| 75 |
74
|
breq1d |
|- ( x = z -> ( ( C L x ) ( perpG ` G ) A <-> ( C L z ) ( perpG ` G ) A ) ) |
| 76 |
75
|
rmo4 |
|- ( E* x e. A ( C L x ) ( perpG ` G ) A <-> A. x e. A A. z e. A ( ( ( C L x ) ( perpG ` G ) A /\ ( C L z ) ( perpG ` G ) A ) -> x = z ) ) |
| 77 |
73 76
|
sylibr |
|- ( ph -> E* x e. A ( C L x ) ( perpG ` G ) A ) |
| 78 |
|
reu5 |
|- ( E! x e. A ( C L x ) ( perpG ` G ) A <-> ( E. x e. A ( C L x ) ( perpG ` G ) A /\ E* x e. A ( C L x ) ( perpG ` G ) A ) ) |
| 79 |
9 77 78
|
sylanbrc |
|- ( ph -> E! x e. A ( C L x ) ( perpG ` G ) A ) |