| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isperp.p |
|
| 2 |
|
isperp.d |
|
| 3 |
|
isperp.i |
|
| 4 |
|
isperp.l |
|
| 5 |
|
isperp.g |
|
| 6 |
|
isperp.a |
|
| 7 |
|
foot.x |
|
| 8 |
|
foot.y |
|
| 9 |
1 2 3 4 5 6 7 8
|
footex |
|
| 10 |
|
eqid |
|
| 11 |
5
|
ad2antrr |
|
| 12 |
7
|
ad2antrr |
|
| 13 |
5
|
adantr |
|
| 14 |
6
|
adantr |
|
| 15 |
|
simprl |
|
| 16 |
1 4 3 13 14 15
|
tglnpt |
|
| 17 |
16
|
adantr |
|
| 18 |
|
simprr |
|
| 19 |
1 4 3 13 14 18
|
tglnpt |
|
| 20 |
19
|
adantr |
|
| 21 |
8
|
adantr |
|
| 22 |
|
nelne2 |
|
| 23 |
15 21 22
|
syl2anc |
|
| 24 |
23
|
necomd |
|
| 25 |
24
|
adantr |
|
| 26 |
1 3 4 11 12 17 25
|
tglinerflx1 |
|
| 27 |
18
|
adantr |
|
| 28 |
|
simprl |
|
| 29 |
7
|
adantr |
|
| 30 |
1 3 4 13 29 16 24
|
tgelrnln |
|
| 31 |
1 3 4 13 29 16 24
|
tglinerflx2 |
|
| 32 |
31 15
|
elind |
|
| 33 |
1 2 3 4 13 30 14 32
|
isperp2 |
|
| 34 |
33
|
adantr |
|
| 35 |
28 34
|
mpbid |
|
| 36 |
|
id |
|
| 37 |
|
eqidd |
|
| 38 |
|
eqidd |
|
| 39 |
36 37 38
|
s3eqd |
|
| 40 |
39
|
eleq1d |
|
| 41 |
|
eqidd |
|
| 42 |
|
eqidd |
|
| 43 |
|
id |
|
| 44 |
41 42 43
|
s3eqd |
|
| 45 |
44
|
eleq1d |
|
| 46 |
40 45
|
rspc2va |
|
| 47 |
26 27 35 46
|
syl21anc |
|
| 48 |
|
nelne2 |
|
| 49 |
18 21 48
|
syl2anc |
|
| 50 |
49
|
necomd |
|
| 51 |
50
|
adantr |
|
| 52 |
1 3 4 11 12 20 51
|
tglinerflx1 |
|
| 53 |
15
|
adantr |
|
| 54 |
|
simprr |
|
| 55 |
1 3 4 13 29 19 50
|
tgelrnln |
|
| 56 |
1 3 4 13 29 19 50
|
tglinerflx2 |
|
| 57 |
56 18
|
elind |
|
| 58 |
1 2 3 4 13 55 14 57
|
isperp2 |
|
| 59 |
58
|
adantr |
|
| 60 |
54 59
|
mpbid |
|
| 61 |
|
eqidd |
|
| 62 |
36 61 38
|
s3eqd |
|
| 63 |
62
|
eleq1d |
|
| 64 |
|
eqidd |
|
| 65 |
|
eqidd |
|
| 66 |
|
id |
|
| 67 |
64 65 66
|
s3eqd |
|
| 68 |
67
|
eleq1d |
|
| 69 |
63 68
|
rspc2va |
|
| 70 |
52 53 60 69
|
syl21anc |
|
| 71 |
1 2 3 4 10 11 12 17 20 47 70
|
ragflat |
|
| 72 |
71
|
ex |
|
| 73 |
72
|
ralrimivva |
|
| 74 |
|
oveq2 |
|
| 75 |
74
|
breq1d |
|
| 76 |
75
|
rmo4 |
|
| 77 |
73 76
|
sylibr |
|
| 78 |
|
reu5 |
|
| 79 |
9 77 78
|
sylanbrc |
|