| Step |
Hyp |
Ref |
Expression |
| 1 |
|
israg.p |
|
| 2 |
|
israg.d |
|
| 3 |
|
israg.i |
|
| 4 |
|
israg.l |
|
| 5 |
|
israg.s |
|
| 6 |
|
israg.g |
|
| 7 |
|
israg.a |
|
| 8 |
|
israg.b |
|
| 9 |
|
israg.c |
|
| 10 |
|
ragflat.1 |
|
| 11 |
|
ragflat.2 |
|
| 12 |
|
simpr |
|
| 13 |
6
|
adantr |
|
| 14 |
7
|
adantr |
|
| 15 |
8
|
adantr |
|
| 16 |
9
|
adantr |
|
| 17 |
|
eqid |
|
| 18 |
1 2 3 4 5 13 16 17 14
|
mircl |
|
| 19 |
10
|
adantr |
|
| 20 |
1 2 3 4 5 13 16 17 14
|
mircgr |
|
| 21 |
1 2 3 13 16 18 16 14 20
|
tgcgrcomlr |
|
| 22 |
1 2 3 4 5 13 14 15 16
|
israg |
|
| 23 |
19 22
|
mpbid |
|
| 24 |
|
eqid |
|
| 25 |
1 2 3 4 5 13 15 24 16
|
mircl |
|
| 26 |
11
|
adantr |
|
| 27 |
1 2 3 4 5 13 14 16 15 26
|
ragcom |
|
| 28 |
|
simpr |
|
| 29 |
1 2 3 4 5 13 15 24 16
|
mirbtwn |
|
| 30 |
1 2 3 13 25 15 16 29
|
tgbtwncom |
|
| 31 |
1 4 3 13 16 25 15 30
|
btwncolg1 |
|
| 32 |
1 2 3 4 5 13 15 16 14 25 27 28 31
|
ragcol |
|
| 33 |
1 2 3 4 5 13 25 16 14
|
israg |
|
| 34 |
32 33
|
mpbid |
|
| 35 |
1 2 3 13 25 14 25 18 34
|
tgcgrcomlr |
|
| 36 |
21 23 35
|
3eqtrd |
|
| 37 |
1 2 3 4 5 13 18 15 16
|
israg |
|
| 38 |
36 37
|
mpbird |
|
| 39 |
1 2 3 4 5 13 16 17 14
|
mirbtwn |
|
| 40 |
1 2 3 13 18 16 14 39
|
tgbtwncom |
|
| 41 |
1 2 3 4 5 13 14 15 16 18 19 38 40
|
ragflat2 |
|
| 42 |
12 41
|
pm2.61dane |
|