Step |
Hyp |
Ref |
Expression |
1 |
|
israg.p |
|
2 |
|
israg.d |
|
3 |
|
israg.i |
|
4 |
|
israg.l |
|
5 |
|
israg.s |
|
6 |
|
israg.g |
|
7 |
|
israg.a |
|
8 |
|
israg.b |
|
9 |
|
israg.c |
|
10 |
|
ragflat.1 |
|
11 |
|
ragflat.2 |
|
12 |
|
simpr |
|
13 |
6
|
adantr |
|
14 |
7
|
adantr |
|
15 |
8
|
adantr |
|
16 |
9
|
adantr |
|
17 |
|
eqid |
|
18 |
1 2 3 4 5 13 16 17 14
|
mircl |
|
19 |
10
|
adantr |
|
20 |
1 2 3 4 5 13 16 17 14
|
mircgr |
|
21 |
1 2 3 13 16 18 16 14 20
|
tgcgrcomlr |
|
22 |
1 2 3 4 5 13 14 15 16
|
israg |
|
23 |
19 22
|
mpbid |
|
24 |
|
eqid |
|
25 |
1 2 3 4 5 13 15 24 16
|
mircl |
|
26 |
11
|
adantr |
|
27 |
1 2 3 4 5 13 14 16 15 26
|
ragcom |
|
28 |
|
simpr |
|
29 |
1 2 3 4 5 13 15 24 16
|
mirbtwn |
|
30 |
1 2 3 13 25 15 16 29
|
tgbtwncom |
|
31 |
1 4 3 13 16 25 15 30
|
btwncolg1 |
|
32 |
1 2 3 4 5 13 15 16 14 25 27 28 31
|
ragcol |
|
33 |
1 2 3 4 5 13 25 16 14
|
israg |
|
34 |
32 33
|
mpbid |
|
35 |
1 2 3 13 25 14 25 18 34
|
tgcgrcomlr |
|
36 |
21 23 35
|
3eqtrd |
|
37 |
1 2 3 4 5 13 18 15 16
|
israg |
|
38 |
36 37
|
mpbird |
|
39 |
1 2 3 4 5 13 16 17 14
|
mirbtwn |
|
40 |
1 2 3 13 18 16 14 39
|
tgbtwncom |
|
41 |
1 2 3 4 5 13 14 15 16 18 19 38 40
|
ragflat2 |
|
42 |
12 41
|
pm2.61dane |
|