Metamath Proof Explorer


Theorem footeq

Description: Uniqueness of the foot point. (Contributed by Thierry Arnoux, 1-Mar-2020)

Ref Expression
Hypotheses isperp.p P = Base G
isperp.d - ˙ = dist G
isperp.i I = Itv G
isperp.l L = Line 𝒢 G
isperp.g φ G 𝒢 Tarski
isperp.a φ A ran L
footeq.x φ X A
footeq.y φ Y A
footeq.z φ Z P
footeq.1 φ X L Z 𝒢 G A
footeq.2 φ Y L Z 𝒢 G A
Assertion footeq φ X = Y

Proof

Step Hyp Ref Expression
1 isperp.p P = Base G
2 isperp.d - ˙ = dist G
3 isperp.i I = Itv G
4 isperp.l L = Line 𝒢 G
5 isperp.g φ G 𝒢 Tarski
6 isperp.a φ A ran L
7 footeq.x φ X A
8 footeq.y φ Y A
9 footeq.z φ Z P
10 footeq.1 φ X L Z 𝒢 G A
11 footeq.2 φ Y L Z 𝒢 G A
12 oveq2 x = X Z L x = Z L X
13 12 breq1d x = X Z L x 𝒢 G A Z L X 𝒢 G A
14 oveq2 x = Y Z L x = Z L Y
15 14 breq1d x = Y Z L x 𝒢 G A Z L Y 𝒢 G A
16 1 2 3 4 5 6 7 9 10 footne φ ¬ Z A
17 1 2 3 4 5 6 9 16 foot φ ∃! x A Z L x 𝒢 G A
18 1 4 3 5 6 7 tglnpt φ X P
19 4 5 10 perpln1 φ X L Z ran L
20 1 3 4 5 18 9 19 tglnne φ X Z
21 1 3 4 5 18 9 20 tglinecom φ X L Z = Z L X
22 21 10 eqbrtrrd φ Z L X 𝒢 G A
23 1 4 3 5 6 8 tglnpt φ Y P
24 4 5 11 perpln1 φ Y L Z ran L
25 1 3 4 5 23 9 24 tglnne φ Y Z
26 1 3 4 5 23 9 25 tglinecom φ Y L Z = Z L Y
27 26 11 eqbrtrrd φ Z L Y 𝒢 G A
28 13 15 17 7 8 22 27 reu2eqd φ X = Y