| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isperp.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | isperp.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | isperp.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | isperp.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 5 |  | isperp.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 6 |  | isperp.a | ⊢ ( 𝜑  →  𝐴  ∈  ran  𝐿 ) | 
						
							| 7 |  | footeq.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐴 ) | 
						
							| 8 |  | footeq.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐴 ) | 
						
							| 9 |  | footeq.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑃 ) | 
						
							| 10 |  | footeq.1 | ⊢ ( 𝜑  →  ( 𝑋 𝐿 𝑍 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) | 
						
							| 11 |  | footeq.2 | ⊢ ( 𝜑  →  ( 𝑌 𝐿 𝑍 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑍 𝐿 𝑥 )  =  ( 𝑍 𝐿 𝑋 ) ) | 
						
							| 13 | 12 | breq1d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑍 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴  ↔  ( 𝑍 𝐿 𝑋 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑥  =  𝑌  →  ( 𝑍 𝐿 𝑥 )  =  ( 𝑍 𝐿 𝑌 ) ) | 
						
							| 15 | 14 | breq1d | ⊢ ( 𝑥  =  𝑌  →  ( ( 𝑍 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴  ↔  ( 𝑍 𝐿 𝑌 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 16 | 1 2 3 4 5 6 7 9 10 | footne | ⊢ ( 𝜑  →  ¬  𝑍  ∈  𝐴 ) | 
						
							| 17 | 1 2 3 4 5 6 9 16 | foot | ⊢ ( 𝜑  →  ∃! 𝑥  ∈  𝐴 ( 𝑍 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) | 
						
							| 18 | 1 4 3 5 6 7 | tglnpt | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 19 | 4 5 10 | perpln1 | ⊢ ( 𝜑  →  ( 𝑋 𝐿 𝑍 )  ∈  ran  𝐿 ) | 
						
							| 20 | 1 3 4 5 18 9 19 | tglnne | ⊢ ( 𝜑  →  𝑋  ≠  𝑍 ) | 
						
							| 21 | 1 3 4 5 18 9 20 | tglinecom | ⊢ ( 𝜑  →  ( 𝑋 𝐿 𝑍 )  =  ( 𝑍 𝐿 𝑋 ) ) | 
						
							| 22 | 21 10 | eqbrtrrd | ⊢ ( 𝜑  →  ( 𝑍 𝐿 𝑋 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) | 
						
							| 23 | 1 4 3 5 6 8 | tglnpt | ⊢ ( 𝜑  →  𝑌  ∈  𝑃 ) | 
						
							| 24 | 4 5 11 | perpln1 | ⊢ ( 𝜑  →  ( 𝑌 𝐿 𝑍 )  ∈  ran  𝐿 ) | 
						
							| 25 | 1 3 4 5 23 9 24 | tglnne | ⊢ ( 𝜑  →  𝑌  ≠  𝑍 ) | 
						
							| 26 | 1 3 4 5 23 9 25 | tglinecom | ⊢ ( 𝜑  →  ( 𝑌 𝐿 𝑍 )  =  ( 𝑍 𝐿 𝑌 ) ) | 
						
							| 27 | 26 11 | eqbrtrrd | ⊢ ( 𝜑  →  ( 𝑍 𝐿 𝑌 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) | 
						
							| 28 | 13 15 17 7 8 22 27 | reu2eqd | ⊢ ( 𝜑  →  𝑋  =  𝑌 ) |