Metamath Proof Explorer


Theorem footeq

Description: Uniqueness of the foot point. (Contributed by Thierry Arnoux, 1-Mar-2020)

Ref Expression
Hypotheses isperp.p 𝑃 = ( Base ‘ 𝐺 )
isperp.d = ( dist ‘ 𝐺 )
isperp.i 𝐼 = ( Itv ‘ 𝐺 )
isperp.l 𝐿 = ( LineG ‘ 𝐺 )
isperp.g ( 𝜑𝐺 ∈ TarskiG )
isperp.a ( 𝜑𝐴 ∈ ran 𝐿 )
footeq.x ( 𝜑𝑋𝐴 )
footeq.y ( 𝜑𝑌𝐴 )
footeq.z ( 𝜑𝑍𝑃 )
footeq.1 ( 𝜑 → ( 𝑋 𝐿 𝑍 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
footeq.2 ( 𝜑 → ( 𝑌 𝐿 𝑍 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
Assertion footeq ( 𝜑𝑋 = 𝑌 )

Proof

Step Hyp Ref Expression
1 isperp.p 𝑃 = ( Base ‘ 𝐺 )
2 isperp.d = ( dist ‘ 𝐺 )
3 isperp.i 𝐼 = ( Itv ‘ 𝐺 )
4 isperp.l 𝐿 = ( LineG ‘ 𝐺 )
5 isperp.g ( 𝜑𝐺 ∈ TarskiG )
6 isperp.a ( 𝜑𝐴 ∈ ran 𝐿 )
7 footeq.x ( 𝜑𝑋𝐴 )
8 footeq.y ( 𝜑𝑌𝐴 )
9 footeq.z ( 𝜑𝑍𝑃 )
10 footeq.1 ( 𝜑 → ( 𝑋 𝐿 𝑍 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
11 footeq.2 ( 𝜑 → ( 𝑌 𝐿 𝑍 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
12 oveq2 ( 𝑥 = 𝑋 → ( 𝑍 𝐿 𝑥 ) = ( 𝑍 𝐿 𝑋 ) )
13 12 breq1d ( 𝑥 = 𝑋 → ( ( 𝑍 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 ↔ ( 𝑍 𝐿 𝑋 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) )
14 oveq2 ( 𝑥 = 𝑌 → ( 𝑍 𝐿 𝑥 ) = ( 𝑍 𝐿 𝑌 ) )
15 14 breq1d ( 𝑥 = 𝑌 → ( ( 𝑍 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 ↔ ( 𝑍 𝐿 𝑌 ) ( ⟂G ‘ 𝐺 ) 𝐴 ) )
16 1 2 3 4 5 6 7 9 10 footne ( 𝜑 → ¬ 𝑍𝐴 )
17 1 2 3 4 5 6 9 16 foot ( 𝜑 → ∃! 𝑥𝐴 ( 𝑍 𝐿 𝑥 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
18 1 4 3 5 6 7 tglnpt ( 𝜑𝑋𝑃 )
19 4 5 10 perpln1 ( 𝜑 → ( 𝑋 𝐿 𝑍 ) ∈ ran 𝐿 )
20 1 3 4 5 18 9 19 tglnne ( 𝜑𝑋𝑍 )
21 1 3 4 5 18 9 20 tglinecom ( 𝜑 → ( 𝑋 𝐿 𝑍 ) = ( 𝑍 𝐿 𝑋 ) )
22 21 10 eqbrtrrd ( 𝜑 → ( 𝑍 𝐿 𝑋 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
23 1 4 3 5 6 8 tglnpt ( 𝜑𝑌𝑃 )
24 4 5 11 perpln1 ( 𝜑 → ( 𝑌 𝐿 𝑍 ) ∈ ran 𝐿 )
25 1 3 4 5 23 9 24 tglnne ( 𝜑𝑌𝑍 )
26 1 3 4 5 23 9 25 tglinecom ( 𝜑 → ( 𝑌 𝐿 𝑍 ) = ( 𝑍 𝐿 𝑌 ) )
27 26 11 eqbrtrrd ( 𝜑 → ( 𝑍 𝐿 𝑌 ) ( ⟂G ‘ 𝐺 ) 𝐴 )
28 13 15 17 7 8 22 27 reu2eqd ( 𝜑𝑋 = 𝑌 )