| Step | Hyp | Ref | Expression | 
						
							| 1 |  | colperpex.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | colperpex.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | colperpex.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | colperpex.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | colperpex.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 6 |  | hlperpnel.a |  |-  ( ph -> A e. ran L ) | 
						
							| 7 |  | hlperpnel.k |  |-  K = ( hlG ` G ) | 
						
							| 8 |  | hlperpnel.1 |  |-  ( ph -> U e. A ) | 
						
							| 9 |  | hlperpnel.2 |  |-  ( ph -> V e. P ) | 
						
							| 10 |  | hlperpnel.3 |  |-  ( ph -> W e. P ) | 
						
							| 11 |  | hlperpnel.4 |  |-  ( ph -> A ( perpG ` G ) ( U L V ) ) | 
						
							| 12 |  | hlperpnel.5 |  |-  ( ph -> V ( K ` U ) W ) | 
						
							| 13 | 1 4 3 5 6 8 | tglnpt |  |-  ( ph -> U e. P ) | 
						
							| 14 | 4 5 11 | perpln2 |  |-  ( ph -> ( U L V ) e. ran L ) | 
						
							| 15 | 1 3 4 5 13 9 14 | tglnne |  |-  ( ph -> U =/= V ) | 
						
							| 16 | 1 3 7 9 10 13 5 12 | hlne2 |  |-  ( ph -> W =/= U ) | 
						
							| 17 | 1 3 7 9 10 13 5 4 12 | hlln |  |-  ( ph -> V e. ( W L U ) ) | 
						
							| 18 | 1 3 4 5 13 9 10 15 17 16 | lnrot1 |  |-  ( ph -> W e. ( U L V ) ) | 
						
							| 19 | 1 3 4 5 13 9 15 10 16 18 | tglineelsb2 |  |-  ( ph -> ( U L V ) = ( U L W ) ) | 
						
							| 20 | 1 2 3 4 5 6 14 11 | perpcom |  |-  ( ph -> ( U L V ) ( perpG ` G ) A ) | 
						
							| 21 | 19 20 | eqbrtrrd |  |-  ( ph -> ( U L W ) ( perpG ` G ) A ) | 
						
							| 22 | 1 2 3 4 5 6 8 10 21 | footne |  |-  ( ph -> -. W e. A ) |