Metamath Proof Explorer


Theorem hlperpnel

Description: A point on a half-line which is perpendicular to a line cannot be on that line. (Contributed by Thierry Arnoux, 1-Mar-2020)

Ref Expression
Hypotheses colperpex.p
|- P = ( Base ` G )
colperpex.d
|- .- = ( dist ` G )
colperpex.i
|- I = ( Itv ` G )
colperpex.l
|- L = ( LineG ` G )
colperpex.g
|- ( ph -> G e. TarskiG )
hlperpnel.a
|- ( ph -> A e. ran L )
hlperpnel.k
|- K = ( hlG ` G )
hlperpnel.1
|- ( ph -> U e. A )
hlperpnel.2
|- ( ph -> V e. P )
hlperpnel.3
|- ( ph -> W e. P )
hlperpnel.4
|- ( ph -> A ( perpG ` G ) ( U L V ) )
hlperpnel.5
|- ( ph -> V ( K ` U ) W )
Assertion hlperpnel
|- ( ph -> -. W e. A )

Proof

Step Hyp Ref Expression
1 colperpex.p
 |-  P = ( Base ` G )
2 colperpex.d
 |-  .- = ( dist ` G )
3 colperpex.i
 |-  I = ( Itv ` G )
4 colperpex.l
 |-  L = ( LineG ` G )
5 colperpex.g
 |-  ( ph -> G e. TarskiG )
6 hlperpnel.a
 |-  ( ph -> A e. ran L )
7 hlperpnel.k
 |-  K = ( hlG ` G )
8 hlperpnel.1
 |-  ( ph -> U e. A )
9 hlperpnel.2
 |-  ( ph -> V e. P )
10 hlperpnel.3
 |-  ( ph -> W e. P )
11 hlperpnel.4
 |-  ( ph -> A ( perpG ` G ) ( U L V ) )
12 hlperpnel.5
 |-  ( ph -> V ( K ` U ) W )
13 1 4 3 5 6 8 tglnpt
 |-  ( ph -> U e. P )
14 4 5 11 perpln2
 |-  ( ph -> ( U L V ) e. ran L )
15 1 3 4 5 13 9 14 tglnne
 |-  ( ph -> U =/= V )
16 1 3 7 9 10 13 5 12 hlne2
 |-  ( ph -> W =/= U )
17 1 3 7 9 10 13 5 4 12 hlln
 |-  ( ph -> V e. ( W L U ) )
18 1 3 4 5 13 9 10 15 17 16 lnrot1
 |-  ( ph -> W e. ( U L V ) )
19 1 3 4 5 13 9 15 10 16 18 tglineelsb2
 |-  ( ph -> ( U L V ) = ( U L W ) )
20 1 2 3 4 5 6 14 11 perpcom
 |-  ( ph -> ( U L V ) ( perpG ` G ) A )
21 19 20 eqbrtrrd
 |-  ( ph -> ( U L W ) ( perpG ` G ) A )
22 1 2 3 4 5 6 8 10 21 footne
 |-  ( ph -> -. W e. A )