Step |
Hyp |
Ref |
Expression |
1 |
|
colperpex.p |
|- P = ( Base ` G ) |
2 |
|
colperpex.d |
|- .- = ( dist ` G ) |
3 |
|
colperpex.i |
|- I = ( Itv ` G ) |
4 |
|
colperpex.l |
|- L = ( LineG ` G ) |
5 |
|
colperpex.g |
|- ( ph -> G e. TarskiG ) |
6 |
|
hlperpnel.a |
|- ( ph -> A e. ran L ) |
7 |
|
hlperpnel.k |
|- K = ( hlG ` G ) |
8 |
|
hlperpnel.1 |
|- ( ph -> U e. A ) |
9 |
|
hlperpnel.2 |
|- ( ph -> V e. P ) |
10 |
|
hlperpnel.3 |
|- ( ph -> W e. P ) |
11 |
|
hlperpnel.4 |
|- ( ph -> A ( perpG ` G ) ( U L V ) ) |
12 |
|
hlperpnel.5 |
|- ( ph -> V ( K ` U ) W ) |
13 |
1 4 3 5 6 8
|
tglnpt |
|- ( ph -> U e. P ) |
14 |
4 5 11
|
perpln2 |
|- ( ph -> ( U L V ) e. ran L ) |
15 |
1 3 4 5 13 9 14
|
tglnne |
|- ( ph -> U =/= V ) |
16 |
1 3 7 9 10 13 5 12
|
hlne2 |
|- ( ph -> W =/= U ) |
17 |
1 3 7 9 10 13 5 4 12
|
hlln |
|- ( ph -> V e. ( W L U ) ) |
18 |
1 3 4 5 13 9 10 15 17 16
|
lnrot1 |
|- ( ph -> W e. ( U L V ) ) |
19 |
1 3 4 5 13 9 15 10 16 18
|
tglineelsb2 |
|- ( ph -> ( U L V ) = ( U L W ) ) |
20 |
1 2 3 4 5 6 14 11
|
perpcom |
|- ( ph -> ( U L V ) ( perpG ` G ) A ) |
21 |
19 20
|
eqbrtrrd |
|- ( ph -> ( U L W ) ( perpG ` G ) A ) |
22 |
1 2 3 4 5 6 8 10 21
|
footne |
|- ( ph -> -. W e. A ) |