Metamath Proof Explorer


Definition df-leg

Description: Define the less-than relationship between geometric distance congruence classes. See legval . (Contributed by Thierry Arnoux, 21-Jun-2019)

Ref Expression
Assertion df-leg 𝒢=gVef|[˙Baseg/p]˙[˙distg/d]˙[˙Itvg/i]˙xpypf=xdyzpzxiye=xdz

Detailed syntax breakdown

Step Hyp Ref Expression
0 cleg class𝒢
1 vg setvarg
2 cvv classV
3 ve setvare
4 vf setvarf
5 cbs classBase
6 1 cv setvarg
7 6 5 cfv classBaseg
8 vp setvarp
9 cds classdist
10 6 9 cfv classdistg
11 vd setvard
12 citv classItv
13 6 12 cfv classItvg
14 vi setvari
15 vx setvarx
16 8 cv setvarp
17 vy setvary
18 4 cv setvarf
19 15 cv setvarx
20 11 cv setvard
21 17 cv setvary
22 19 21 20 co classxdy
23 18 22 wceq wfff=xdy
24 vz setvarz
25 24 cv setvarz
26 14 cv setvari
27 19 21 26 co classxiy
28 25 27 wcel wffzxiy
29 3 cv setvare
30 19 25 20 co classxdz
31 29 30 wceq wffe=xdz
32 28 31 wa wffzxiye=xdz
33 32 24 16 wrex wffzpzxiye=xdz
34 23 33 wa wfff=xdyzpzxiye=xdz
35 34 17 16 wrex wffypf=xdyzpzxiye=xdz
36 35 15 16 wrex wffxpypf=xdyzpzxiye=xdz
37 36 14 13 wsbc wff[˙Itvg/i]˙xpypf=xdyzpzxiye=xdz
38 37 11 10 wsbc wff[˙distg/d]˙[˙Itvg/i]˙xpypf=xdyzpzxiye=xdz
39 38 8 7 wsbc wff[˙Baseg/p]˙[˙distg/d]˙[˙Itvg/i]˙xpypf=xdyzpzxiye=xdz
40 39 3 4 copab classef|[˙Baseg/p]˙[˙distg/d]˙[˙Itvg/i]˙xpypf=xdyzpzxiye=xdz
41 1 2 40 cmpt classgVef|[˙Baseg/p]˙[˙distg/d]˙[˙Itvg/i]˙xpypf=xdyzpzxiye=xdz
42 0 41 wceq wff𝒢=gVef|[˙Baseg/p]˙[˙distg/d]˙[˙Itvg/i]˙xpypf=xdyzpzxiye=xdz