| Step |
Hyp |
Ref |
Expression |
| 1 |
|
legval.p |
|
| 2 |
|
legval.d |
|
| 3 |
|
legval.i |
|
| 4 |
|
legval.l |
|
| 5 |
|
legval.g |
|
| 6 |
|
elex |
|
| 7 |
|
simp1 |
|
| 8 |
7
|
eqcomd |
|
| 9 |
|
simp2 |
|
| 10 |
9
|
eqcomd |
|
| 11 |
10
|
oveqd |
|
| 12 |
11
|
eqeq2d |
|
| 13 |
|
simp3 |
|
| 14 |
13
|
eqcomd |
|
| 15 |
14
|
oveqd |
|
| 16 |
15
|
eleq2d |
|
| 17 |
10
|
oveqd |
|
| 18 |
17
|
eqeq2d |
|
| 19 |
16 18
|
anbi12d |
|
| 20 |
8 19
|
rexeqbidv |
|
| 21 |
12 20
|
anbi12d |
|
| 22 |
8 21
|
rexeqbidv |
|
| 23 |
8 22
|
rexeqbidv |
|
| 24 |
1 2 3 23
|
sbcie3s |
|
| 25 |
24
|
opabbidv |
|
| 26 |
|
df-leg |
|
| 27 |
2
|
fvexi |
|
| 28 |
27
|
imaex |
|
| 29 |
|
p0ex |
|
| 30 |
28 29
|
unex |
|
| 31 |
30
|
a1i |
|
| 32 |
|
simprr |
|
| 33 |
|
ovima0 |
|
| 34 |
33
|
ad5ant14 |
|
| 35 |
32 34
|
eqeltrd |
|
| 36 |
|
simpllr |
|
| 37 |
36
|
simpld |
|
| 38 |
|
ovima0 |
|
| 39 |
38
|
ad3antrrr |
|
| 40 |
37 39
|
eqeltrd |
|
| 41 |
35 40
|
jca |
|
| 42 |
|
simprr |
|
| 43 |
|
eleq1w |
|
| 44 |
|
oveq2 |
|
| 45 |
44
|
eqeq2d |
|
| 46 |
43 45
|
anbi12d |
|
| 47 |
46
|
cbvrexvw |
|
| 48 |
42 47
|
sylib |
|
| 49 |
41 48
|
r19.29a |
|
| 50 |
49
|
ex |
|
| 51 |
50
|
rexlimivv |
|
| 52 |
51
|
adantl |
|
| 53 |
52
|
simpld |
|
| 54 |
52
|
simprd |
|
| 55 |
31 31 53 54
|
opabex2 |
|
| 56 |
55
|
mptru |
|
| 57 |
25 26 56
|
fvmpt |
|
| 58 |
5 6 57
|
3syl |
|
| 59 |
4 58
|
eqtrid |
|