Metamath Proof Explorer


Theorem opphllem6

Description: First part of Lemma 9.4 of Schwabhauser p. 68. (Contributed by Thierry Arnoux, 3-Mar-2020)

Ref Expression
Hypotheses hpg.p P=BaseG
hpg.d -˙=distG
hpg.i I=ItvG
hpg.o O=ab|aPDbPDtDtaIb
opphl.l L=Line𝒢G
opphl.d φDranL
opphl.g φG𝒢Tarski
opphl.k K=hl𝒢G
opphllem5.n N=pInv𝒢GM
opphllem5.a φAP
opphllem5.c φCP
opphllem5.r φRD
opphllem5.s φSD
opphllem5.m φMP
opphllem5.o φAOC
opphllem5.p φD𝒢GALR
opphllem5.q φD𝒢GCLS
opphllem5.u φUP
opphllem6.v φNR=S
Assertion opphllem6 φUKRANUKSC

Proof

Step Hyp Ref Expression
1 hpg.p P=BaseG
2 hpg.d -˙=distG
3 hpg.i I=ItvG
4 hpg.o O=ab|aPDbPDtDtaIb
5 opphl.l L=Line𝒢G
6 opphl.d φDranL
7 opphl.g φG𝒢Tarski
8 opphl.k K=hl𝒢G
9 opphllem5.n N=pInv𝒢GM
10 opphllem5.a φAP
11 opphllem5.c φCP
12 opphllem5.r φRD
13 opphllem5.s φSD
14 opphllem5.m φMP
15 opphllem5.o φAOC
16 opphllem5.p φD𝒢GALR
17 opphllem5.q φD𝒢GCLS
18 opphllem5.u φUP
19 opphllem6.v φNR=S
20 eqid pInv𝒢G=pInv𝒢G
21 7 adantr φR=SG𝒢Tarski
22 14 adantr φR=SMP
23 10 adantr φR=SAP
24 11 adantr φR=SCP
25 18 adantr φR=SUP
26 1 5 3 7 6 12 tglnpt φRP
27 5 7 16 perpln2 φALRranL
28 1 3 5 7 10 26 27 tglnne φAR
29 28 adantr φR=SAR
30 19 adantr φR=SNR=S
31 simpr φR=SR=S
32 30 31 eqtr4d φR=SNR=R
33 1 2 3 5 20 7 14 9 26 mirinv φNR=RM=R
34 33 adantr φR=SNR=RM=R
35 32 34 mpbid φR=SM=R
36 29 35 neeqtrrd φR=SAM
37 1 5 3 7 6 13 tglnpt φSP
38 5 7 17 perpln2 φCLSranL
39 1 3 5 7 11 37 38 tglnne φCS
40 39 adantr φR=SCS
41 35 31 eqtrd φR=SM=S
42 40 41 neeqtrrd φR=SCM
43 simpr φR=StDtAICR=tR=t
44 7 ad4antr φR=StDtAICRtG𝒢Tarski
45 11 ad4antr φR=StDtAICRtCP
46 26 ad4antr φR=StDtAICRtRP
47 7 ad3antrrr φR=StDtAICG𝒢Tarski
48 6 ad3antrrr φR=StDtAICDranL
49 simplr φR=StDtAICtD
50 1 5 3 47 48 49 tglnpt φR=StDtAICtP
51 50 adantr φR=StDtAICRttP
52 10 ad4antr φR=StDtAICRtAP
53 37 ad4antr φR=StDtAICRtSP
54 simpllr φR=StDtAICR=S
55 1 3 5 7 11 37 39 tglinerflx2 φSCLS
56 55 ad3antrrr φR=StDtAICSCLS
57 54 56 eqeltrd φR=StDtAICRCLS
58 57 adantr φR=StDtAICRtRCLS
59 1 2 3 5 7 6 38 17 perpcom φCLS𝒢GD
60 59 ad4antr φR=StDtAICRtCLS𝒢GD
61 simpr φR=StDtAICRtRt
62 6 ad4antr φR=StDtAICRtDranL
63 12 ad4antr φR=StDtAICRtRD
64 simpllr φR=StDtAICRttD
65 1 3 5 44 46 51 61 61 62 63 64 tglinethru φR=StDtAICRtD=RLt
66 60 65 breqtrd φR=StDtAICRtCLS𝒢GRLt
67 1 2 3 5 44 45 53 58 51 66 perprag φR=StDtAICRt⟨“CRt”⟩𝒢G
68 1 3 5 7 10 26 28 tglinerflx2 φRALR
69 68 ad4antr φR=StDtAICRtRALR
70 1 2 3 5 7 6 27 16 perpcom φALR𝒢GD
71 70 ad4antr φR=StDtAICRtALR𝒢GD
72 71 65 breqtrd φR=StDtAICRtALR𝒢GRLt
73 1 2 3 5 44 52 46 69 51 72 perprag φR=StDtAICRt⟨“ARt”⟩𝒢G
74 simplr φR=StDtAICRttAIC
75 1 2 3 44 52 51 45 74 tgbtwncom φR=StDtAICRttCIA
76 1 2 3 5 20 44 45 46 51 52 67 73 75 ragflat2 φR=StDtAICRtR=t
77 43 76 pm2.61dane φR=StDtAICR=t
78 simpr φR=StDtAICtAIC
79 77 78 eqeltrd φR=StDtAICRAIC
80 1 2 3 4 10 11 islnopp φAOC¬AD¬CDtDtAIC
81 15 80 mpbid φ¬AD¬CDtDtAIC
82 81 simprd φtDtAIC
83 82 adantr φR=StDtAIC
84 79 83 r19.29a φR=SRAIC
85 35 84 eqeltrd φR=SMAIC
86 1 2 3 5 20 21 9 8 22 23 24 25 36 42 85 mirbtwnhl φR=SUKMANUKMC
87 35 fveq2d φR=SKM=KR
88 87 breqd φR=SUKMAUKRA
89 41 fveq2d φR=SKM=KS
90 89 breqd φR=SNUKMCNUKSC
91 86 88 90 3bitr3d φR=SUKRANUKSC
92 6 ad2antrr φRSS-˙C𝒢GR-˙ADranL
93 7 ad2antrr φRSS-˙C𝒢GR-˙AG𝒢Tarski
94 10 ad2antrr φRSS-˙C𝒢GR-˙AAP
95 11 ad2antrr φRSS-˙C𝒢GR-˙ACP
96 12 ad2antrr φRSS-˙C𝒢GR-˙ARD
97 13 ad2antrr φRSS-˙C𝒢GR-˙ASD
98 14 ad2antrr φRSS-˙C𝒢GR-˙AMP
99 15 ad2antrr φRSS-˙C𝒢GR-˙AAOC
100 16 ad2antrr φRSS-˙C𝒢GR-˙AD𝒢GALR
101 17 ad2antrr φRSS-˙C𝒢GR-˙AD𝒢GCLS
102 simplr φRSS-˙C𝒢GR-˙ARS
103 simpr φRSS-˙C𝒢GR-˙AS-˙C𝒢GR-˙A
104 18 ad2antrr φRSS-˙C𝒢GR-˙AUP
105 19 ad2antrr φRSS-˙C𝒢GR-˙ANR=S
106 1 2 3 4 5 92 93 8 9 94 95 96 97 98 99 100 101 102 103 104 105 opphllem3 φRSS-˙C𝒢GR-˙AUKRANUKSC
107 6 ad2antrr φRSR-˙A𝒢GS-˙CDranL
108 7 ad2antrr φRSR-˙A𝒢GS-˙CG𝒢Tarski
109 11 ad2antrr φRSR-˙A𝒢GS-˙CCP
110 10 ad2antrr φRSR-˙A𝒢GS-˙CAP
111 13 ad2antrr φRSR-˙A𝒢GS-˙CSD
112 12 ad2antrr φRSR-˙A𝒢GS-˙CRD
113 14 ad2antrr φRSR-˙A𝒢GS-˙CMP
114 15 ad2antrr φRSR-˙A𝒢GS-˙CAOC
115 1 2 3 4 5 107 108 110 109 114 oppcom φRSR-˙A𝒢GS-˙CCOA
116 17 ad2antrr φRSR-˙A𝒢GS-˙CD𝒢GCLS
117 16 ad2antrr φRSR-˙A𝒢GS-˙CD𝒢GALR
118 simpr φRSRS
119 118 necomd φRSSR
120 119 adantr φRSR-˙A𝒢GS-˙CSR
121 simpr φRSR-˙A𝒢GS-˙CR-˙A𝒢GS-˙C
122 18 ad2antrr φRSR-˙A𝒢GS-˙CUP
123 1 2 3 5 20 108 113 9 122 mircl φRSR-˙A𝒢GS-˙CNUP
124 26 ad2antrr φRSR-˙A𝒢GS-˙CRP
125 19 ad2antrr φRSR-˙A𝒢GS-˙CNR=S
126 1 2 3 5 20 108 113 9 124 125 mircom φRSR-˙A𝒢GS-˙CNS=R
127 1 2 3 4 5 107 108 8 9 109 110 111 112 113 115 116 117 120 121 123 126 opphllem3 φRSR-˙A𝒢GS-˙CNUKSCNNUKRA
128 1 2 3 5 20 108 113 9 122 mirmir φRSR-˙A𝒢GS-˙CNNU=U
129 128 breq1d φRSR-˙A𝒢GS-˙CNNUKRAUKRA
130 127 129 bitr2d φRSR-˙A𝒢GS-˙CUKRANUKSC
131 eqid 𝒢G=𝒢G
132 1 2 3 131 7 37 11 26 10 legtrid φS-˙C𝒢GR-˙AR-˙A𝒢GS-˙C
133 132 adantr φRSS-˙C𝒢GR-˙AR-˙A𝒢GS-˙C
134 106 130 133 mpjaodan φRSUKRANUKSC
135 91 134 pm2.61dane φUKRANUKSC