Metamath Proof Explorer


Theorem opphllem6

Description: First part of Lemma 9.4 of Schwabhauser p. 68. (Contributed by Thierry Arnoux, 3-Mar-2020)

Ref Expression
Hypotheses hpg.p P = Base G
hpg.d - ˙ = dist G
hpg.i I = Itv G
hpg.o O = a b | a P D b P D t D t a I b
opphl.l L = Line 𝒢 G
opphl.d φ D ran L
opphl.g φ G 𝒢 Tarski
opphl.k K = hl 𝒢 G
opphllem5.n N = pInv 𝒢 G M
opphllem5.a φ A P
opphllem5.c φ C P
opphllem5.r φ R D
opphllem5.s φ S D
opphllem5.m φ M P
opphllem5.o φ A O C
opphllem5.p φ D 𝒢 G A L R
opphllem5.q φ D 𝒢 G C L S
opphllem5.u φ U P
opphllem6.v φ N R = S
Assertion opphllem6 φ U K R A N U K S C

Proof

Step Hyp Ref Expression
1 hpg.p P = Base G
2 hpg.d - ˙ = dist G
3 hpg.i I = Itv G
4 hpg.o O = a b | a P D b P D t D t a I b
5 opphl.l L = Line 𝒢 G
6 opphl.d φ D ran L
7 opphl.g φ G 𝒢 Tarski
8 opphl.k K = hl 𝒢 G
9 opphllem5.n N = pInv 𝒢 G M
10 opphllem5.a φ A P
11 opphllem5.c φ C P
12 opphllem5.r φ R D
13 opphllem5.s φ S D
14 opphllem5.m φ M P
15 opphllem5.o φ A O C
16 opphllem5.p φ D 𝒢 G A L R
17 opphllem5.q φ D 𝒢 G C L S
18 opphllem5.u φ U P
19 opphllem6.v φ N R = S
20 eqid pInv 𝒢 G = pInv 𝒢 G
21 7 adantr φ R = S G 𝒢 Tarski
22 14 adantr φ R = S M P
23 10 adantr φ R = S A P
24 11 adantr φ R = S C P
25 18 adantr φ R = S U P
26 1 5 3 7 6 12 tglnpt φ R P
27 5 7 16 perpln2 φ A L R ran L
28 1 3 5 7 10 26 27 tglnne φ A R
29 28 adantr φ R = S A R
30 19 adantr φ R = S N R = S
31 simpr φ R = S R = S
32 30 31 eqtr4d φ R = S N R = R
33 1 2 3 5 20 7 14 9 26 mirinv φ N R = R M = R
34 33 adantr φ R = S N R = R M = R
35 32 34 mpbid φ R = S M = R
36 29 35 neeqtrrd φ R = S A M
37 1 5 3 7 6 13 tglnpt φ S P
38 5 7 17 perpln2 φ C L S ran L
39 1 3 5 7 11 37 38 tglnne φ C S
40 39 adantr φ R = S C S
41 35 31 eqtrd φ R = S M = S
42 40 41 neeqtrrd φ R = S C M
43 simpr φ R = S t D t A I C R = t R = t
44 7 ad4antr φ R = S t D t A I C R t G 𝒢 Tarski
45 11 ad4antr φ R = S t D t A I C R t C P
46 26 ad4antr φ R = S t D t A I C R t R P
47 7 ad3antrrr φ R = S t D t A I C G 𝒢 Tarski
48 6 ad3antrrr φ R = S t D t A I C D ran L
49 simplr φ R = S t D t A I C t D
50 1 5 3 47 48 49 tglnpt φ R = S t D t A I C t P
51 50 adantr φ R = S t D t A I C R t t P
52 10 ad4antr φ R = S t D t A I C R t A P
53 37 ad4antr φ R = S t D t A I C R t S P
54 simpllr φ R = S t D t A I C R = S
55 1 3 5 7 11 37 39 tglinerflx2 φ S C L S
56 55 ad3antrrr φ R = S t D t A I C S C L S
57 54 56 eqeltrd φ R = S t D t A I C R C L S
58 57 adantr φ R = S t D t A I C R t R C L S
59 1 2 3 5 7 6 38 17 perpcom φ C L S 𝒢 G D
60 59 ad4antr φ R = S t D t A I C R t C L S 𝒢 G D
61 simpr φ R = S t D t A I C R t R t
62 6 ad4antr φ R = S t D t A I C R t D ran L
63 12 ad4antr φ R = S t D t A I C R t R D
64 simpllr φ R = S t D t A I C R t t D
65 1 3 5 44 46 51 61 61 62 63 64 tglinethru φ R = S t D t A I C R t D = R L t
66 60 65 breqtrd φ R = S t D t A I C R t C L S 𝒢 G R L t
67 1 2 3 5 44 45 53 58 51 66 perprag φ R = S t D t A I C R t ⟨“ CRt ”⟩ 𝒢 G
68 1 3 5 7 10 26 28 tglinerflx2 φ R A L R
69 68 ad4antr φ R = S t D t A I C R t R A L R
70 1 2 3 5 7 6 27 16 perpcom φ A L R 𝒢 G D
71 70 ad4antr φ R = S t D t A I C R t A L R 𝒢 G D
72 71 65 breqtrd φ R = S t D t A I C R t A L R 𝒢 G R L t
73 1 2 3 5 44 52 46 69 51 72 perprag φ R = S t D t A I C R t ⟨“ ARt ”⟩ 𝒢 G
74 simplr φ R = S t D t A I C R t t A I C
75 1 2 3 44 52 51 45 74 tgbtwncom φ R = S t D t A I C R t t C I A
76 1 2 3 5 20 44 45 46 51 52 67 73 75 ragflat2 φ R = S t D t A I C R t R = t
77 43 76 pm2.61dane φ R = S t D t A I C R = t
78 simpr φ R = S t D t A I C t A I C
79 77 78 eqeltrd φ R = S t D t A I C R A I C
80 1 2 3 4 10 11 islnopp φ A O C ¬ A D ¬ C D t D t A I C
81 15 80 mpbid φ ¬ A D ¬ C D t D t A I C
82 81 simprd φ t D t A I C
83 82 adantr φ R = S t D t A I C
84 79 83 r19.29a φ R = S R A I C
85 35 84 eqeltrd φ R = S M A I C
86 1 2 3 5 20 21 9 8 22 23 24 25 36 42 85 mirbtwnhl φ R = S U K M A N U K M C
87 35 fveq2d φ R = S K M = K R
88 87 breqd φ R = S U K M A U K R A
89 41 fveq2d φ R = S K M = K S
90 89 breqd φ R = S N U K M C N U K S C
91 86 88 90 3bitr3d φ R = S U K R A N U K S C
92 6 ad2antrr φ R S S - ˙ C 𝒢 G R - ˙ A D ran L
93 7 ad2antrr φ R S S - ˙ C 𝒢 G R - ˙ A G 𝒢 Tarski
94 10 ad2antrr φ R S S - ˙ C 𝒢 G R - ˙ A A P
95 11 ad2antrr φ R S S - ˙ C 𝒢 G R - ˙ A C P
96 12 ad2antrr φ R S S - ˙ C 𝒢 G R - ˙ A R D
97 13 ad2antrr φ R S S - ˙ C 𝒢 G R - ˙ A S D
98 14 ad2antrr φ R S S - ˙ C 𝒢 G R - ˙ A M P
99 15 ad2antrr φ R S S - ˙ C 𝒢 G R - ˙ A A O C
100 16 ad2antrr φ R S S - ˙ C 𝒢 G R - ˙ A D 𝒢 G A L R
101 17 ad2antrr φ R S S - ˙ C 𝒢 G R - ˙ A D 𝒢 G C L S
102 simplr φ R S S - ˙ C 𝒢 G R - ˙ A R S
103 simpr φ R S S - ˙ C 𝒢 G R - ˙ A S - ˙ C 𝒢 G R - ˙ A
104 18 ad2antrr φ R S S - ˙ C 𝒢 G R - ˙ A U P
105 19 ad2antrr φ R S S - ˙ C 𝒢 G R - ˙ A N R = S
106 1 2 3 4 5 92 93 8 9 94 95 96 97 98 99 100 101 102 103 104 105 opphllem3 φ R S S - ˙ C 𝒢 G R - ˙ A U K R A N U K S C
107 6 ad2antrr φ R S R - ˙ A 𝒢 G S - ˙ C D ran L
108 7 ad2antrr φ R S R - ˙ A 𝒢 G S - ˙ C G 𝒢 Tarski
109 11 ad2antrr φ R S R - ˙ A 𝒢 G S - ˙ C C P
110 10 ad2antrr φ R S R - ˙ A 𝒢 G S - ˙ C A P
111 13 ad2antrr φ R S R - ˙ A 𝒢 G S - ˙ C S D
112 12 ad2antrr φ R S R - ˙ A 𝒢 G S - ˙ C R D
113 14 ad2antrr φ R S R - ˙ A 𝒢 G S - ˙ C M P
114 15 ad2antrr φ R S R - ˙ A 𝒢 G S - ˙ C A O C
115 1 2 3 4 5 107 108 110 109 114 oppcom φ R S R - ˙ A 𝒢 G S - ˙ C C O A
116 17 ad2antrr φ R S R - ˙ A 𝒢 G S - ˙ C D 𝒢 G C L S
117 16 ad2antrr φ R S R - ˙ A 𝒢 G S - ˙ C D 𝒢 G A L R
118 simpr φ R S R S
119 118 necomd φ R S S R
120 119 adantr φ R S R - ˙ A 𝒢 G S - ˙ C S R
121 simpr φ R S R - ˙ A 𝒢 G S - ˙ C R - ˙ A 𝒢 G S - ˙ C
122 18 ad2antrr φ R S R - ˙ A 𝒢 G S - ˙ C U P
123 1 2 3 5 20 108 113 9 122 mircl φ R S R - ˙ A 𝒢 G S - ˙ C N U P
124 26 ad2antrr φ R S R - ˙ A 𝒢 G S - ˙ C R P
125 19 ad2antrr φ R S R - ˙ A 𝒢 G S - ˙ C N R = S
126 1 2 3 5 20 108 113 9 124 125 mircom φ R S R - ˙ A 𝒢 G S - ˙ C N S = R
127 1 2 3 4 5 107 108 8 9 109 110 111 112 113 115 116 117 120 121 123 126 opphllem3 φ R S R - ˙ A 𝒢 G S - ˙ C N U K S C N N U K R A
128 1 2 3 5 20 108 113 9 122 mirmir φ R S R - ˙ A 𝒢 G S - ˙ C N N U = U
129 128 breq1d φ R S R - ˙ A 𝒢 G S - ˙ C N N U K R A U K R A
130 127 129 bitr2d φ R S R - ˙ A 𝒢 G S - ˙ C U K R A N U K S C
131 eqid 𝒢 G = 𝒢 G
132 1 2 3 131 7 37 11 26 10 legtrid φ S - ˙ C 𝒢 G R - ˙ A R - ˙ A 𝒢 G S - ˙ C
133 132 adantr φ R S S - ˙ C 𝒢 G R - ˙ A R - ˙ A 𝒢 G S - ˙ C
134 106 130 133 mpjaodan φ R S U K R A N U K S C
135 91 134 pm2.61dane φ U K R A N U K S C