| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | hpg.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | hpg.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | hpg.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | 
						
							| 5 |  | opphl.l |  |-  L = ( LineG ` G ) | 
						
							| 6 |  | opphl.d |  |-  ( ph -> D e. ran L ) | 
						
							| 7 |  | opphl.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 8 |  | opphl.k |  |-  K = ( hlG ` G ) | 
						
							| 9 |  | opphllem5.n |  |-  N = ( ( pInvG ` G ) ` M ) | 
						
							| 10 |  | opphllem5.a |  |-  ( ph -> A e. P ) | 
						
							| 11 |  | opphllem5.c |  |-  ( ph -> C e. P ) | 
						
							| 12 |  | opphllem5.r |  |-  ( ph -> R e. D ) | 
						
							| 13 |  | opphllem5.s |  |-  ( ph -> S e. D ) | 
						
							| 14 |  | opphllem5.m |  |-  ( ph -> M e. P ) | 
						
							| 15 |  | opphllem5.o |  |-  ( ph -> A O C ) | 
						
							| 16 |  | opphllem5.p |  |-  ( ph -> D ( perpG ` G ) ( A L R ) ) | 
						
							| 17 |  | opphllem5.q |  |-  ( ph -> D ( perpG ` G ) ( C L S ) ) | 
						
							| 18 |  | opphllem5.u |  |-  ( ph -> U e. P ) | 
						
							| 19 |  | opphllem6.v |  |-  ( ph -> ( N ` R ) = S ) | 
						
							| 20 |  | eqid |  |-  ( pInvG ` G ) = ( pInvG ` G ) | 
						
							| 21 | 7 | adantr |  |-  ( ( ph /\ R = S ) -> G e. TarskiG ) | 
						
							| 22 | 14 | adantr |  |-  ( ( ph /\ R = S ) -> M e. P ) | 
						
							| 23 | 10 | adantr |  |-  ( ( ph /\ R = S ) -> A e. P ) | 
						
							| 24 | 11 | adantr |  |-  ( ( ph /\ R = S ) -> C e. P ) | 
						
							| 25 | 18 | adantr |  |-  ( ( ph /\ R = S ) -> U e. P ) | 
						
							| 26 | 1 5 3 7 6 12 | tglnpt |  |-  ( ph -> R e. P ) | 
						
							| 27 | 5 7 16 | perpln2 |  |-  ( ph -> ( A L R ) e. ran L ) | 
						
							| 28 | 1 3 5 7 10 26 27 | tglnne |  |-  ( ph -> A =/= R ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ R = S ) -> A =/= R ) | 
						
							| 30 | 19 | adantr |  |-  ( ( ph /\ R = S ) -> ( N ` R ) = S ) | 
						
							| 31 |  | simpr |  |-  ( ( ph /\ R = S ) -> R = S ) | 
						
							| 32 | 30 31 | eqtr4d |  |-  ( ( ph /\ R = S ) -> ( N ` R ) = R ) | 
						
							| 33 | 1 2 3 5 20 7 14 9 26 | mirinv |  |-  ( ph -> ( ( N ` R ) = R <-> M = R ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ph /\ R = S ) -> ( ( N ` R ) = R <-> M = R ) ) | 
						
							| 35 | 32 34 | mpbid |  |-  ( ( ph /\ R = S ) -> M = R ) | 
						
							| 36 | 29 35 | neeqtrrd |  |-  ( ( ph /\ R = S ) -> A =/= M ) | 
						
							| 37 | 1 5 3 7 6 13 | tglnpt |  |-  ( ph -> S e. P ) | 
						
							| 38 | 5 7 17 | perpln2 |  |-  ( ph -> ( C L S ) e. ran L ) | 
						
							| 39 | 1 3 5 7 11 37 38 | tglnne |  |-  ( ph -> C =/= S ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ph /\ R = S ) -> C =/= S ) | 
						
							| 41 | 35 31 | eqtrd |  |-  ( ( ph /\ R = S ) -> M = S ) | 
						
							| 42 | 40 41 | neeqtrrd |  |-  ( ( ph /\ R = S ) -> C =/= M ) | 
						
							| 43 |  | simpr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R = t ) -> R = t ) | 
						
							| 44 | 7 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> G e. TarskiG ) | 
						
							| 45 | 11 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> C e. P ) | 
						
							| 46 | 26 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R e. P ) | 
						
							| 47 | 7 | ad3antrrr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> G e. TarskiG ) | 
						
							| 48 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> D e. ran L ) | 
						
							| 49 |  | simplr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> t e. D ) | 
						
							| 50 | 1 5 3 47 48 49 | tglnpt |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> t e. P ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> t e. P ) | 
						
							| 52 | 10 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> A e. P ) | 
						
							| 53 | 37 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> S e. P ) | 
						
							| 54 |  | simpllr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R = S ) | 
						
							| 55 | 1 3 5 7 11 37 39 | tglinerflx2 |  |-  ( ph -> S e. ( C L S ) ) | 
						
							| 56 | 55 | ad3antrrr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> S e. ( C L S ) ) | 
						
							| 57 | 54 56 | eqeltrd |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. ( C L S ) ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R e. ( C L S ) ) | 
						
							| 59 | 1 2 3 5 7 6 38 17 | perpcom |  |-  ( ph -> ( C L S ) ( perpG ` G ) D ) | 
						
							| 60 | 59 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> ( C L S ) ( perpG ` G ) D ) | 
						
							| 61 |  | simpr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R =/= t ) | 
						
							| 62 | 6 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> D e. ran L ) | 
						
							| 63 | 12 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R e. D ) | 
						
							| 64 |  | simpllr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> t e. D ) | 
						
							| 65 | 1 3 5 44 46 51 61 61 62 63 64 | tglinethru |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> D = ( R L t ) ) | 
						
							| 66 | 60 65 | breqtrd |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> ( C L S ) ( perpG ` G ) ( R L t ) ) | 
						
							| 67 | 1 2 3 5 44 45 53 58 51 66 | perprag |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> <" C R t "> e. ( raG ` G ) ) | 
						
							| 68 | 1 3 5 7 10 26 28 | tglinerflx2 |  |-  ( ph -> R e. ( A L R ) ) | 
						
							| 69 | 68 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R e. ( A L R ) ) | 
						
							| 70 | 1 2 3 5 7 6 27 16 | perpcom |  |-  ( ph -> ( A L R ) ( perpG ` G ) D ) | 
						
							| 71 | 70 | ad4antr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> ( A L R ) ( perpG ` G ) D ) | 
						
							| 72 | 71 65 | breqtrd |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> ( A L R ) ( perpG ` G ) ( R L t ) ) | 
						
							| 73 | 1 2 3 5 44 52 46 69 51 72 | perprag |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> <" A R t "> e. ( raG ` G ) ) | 
						
							| 74 |  | simplr |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> t e. ( A I C ) ) | 
						
							| 75 | 1 2 3 44 52 51 45 74 | tgbtwncom |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> t e. ( C I A ) ) | 
						
							| 76 | 1 2 3 5 20 44 45 46 51 52 67 73 75 | ragflat2 |  |-  ( ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) /\ R =/= t ) -> R = t ) | 
						
							| 77 | 43 76 | pm2.61dane |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R = t ) | 
						
							| 78 |  | simpr |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> t e. ( A I C ) ) | 
						
							| 79 | 77 78 | eqeltrd |  |-  ( ( ( ( ph /\ R = S ) /\ t e. D ) /\ t e. ( A I C ) ) -> R e. ( A I C ) ) | 
						
							| 80 | 1 2 3 4 10 11 | islnopp |  |-  ( ph -> ( A O C <-> ( ( -. A e. D /\ -. C e. D ) /\ E. t e. D t e. ( A I C ) ) ) ) | 
						
							| 81 | 15 80 | mpbid |  |-  ( ph -> ( ( -. A e. D /\ -. C e. D ) /\ E. t e. D t e. ( A I C ) ) ) | 
						
							| 82 | 81 | simprd |  |-  ( ph -> E. t e. D t e. ( A I C ) ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ph /\ R = S ) -> E. t e. D t e. ( A I C ) ) | 
						
							| 84 | 79 83 | r19.29a |  |-  ( ( ph /\ R = S ) -> R e. ( A I C ) ) | 
						
							| 85 | 35 84 | eqeltrd |  |-  ( ( ph /\ R = S ) -> M e. ( A I C ) ) | 
						
							| 86 | 1 2 3 5 20 21 9 8 22 23 24 25 36 42 85 | mirbtwnhl |  |-  ( ( ph /\ R = S ) -> ( U ( K ` M ) A <-> ( N ` U ) ( K ` M ) C ) ) | 
						
							| 87 | 35 | fveq2d |  |-  ( ( ph /\ R = S ) -> ( K ` M ) = ( K ` R ) ) | 
						
							| 88 | 87 | breqd |  |-  ( ( ph /\ R = S ) -> ( U ( K ` M ) A <-> U ( K ` R ) A ) ) | 
						
							| 89 | 41 | fveq2d |  |-  ( ( ph /\ R = S ) -> ( K ` M ) = ( K ` S ) ) | 
						
							| 90 | 89 | breqd |  |-  ( ( ph /\ R = S ) -> ( ( N ` U ) ( K ` M ) C <-> ( N ` U ) ( K ` S ) C ) ) | 
						
							| 91 | 86 88 90 | 3bitr3d |  |-  ( ( ph /\ R = S ) -> ( U ( K ` R ) A <-> ( N ` U ) ( K ` S ) C ) ) | 
						
							| 92 | 6 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> D e. ran L ) | 
						
							| 93 | 7 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> G e. TarskiG ) | 
						
							| 94 | 10 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> A e. P ) | 
						
							| 95 | 11 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> C e. P ) | 
						
							| 96 | 12 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> R e. D ) | 
						
							| 97 | 13 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> S e. D ) | 
						
							| 98 | 14 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> M e. P ) | 
						
							| 99 | 15 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> A O C ) | 
						
							| 100 | 16 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> D ( perpG ` G ) ( A L R ) ) | 
						
							| 101 | 17 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> D ( perpG ` G ) ( C L S ) ) | 
						
							| 102 |  | simplr |  |-  ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> R =/= S ) | 
						
							| 103 |  | simpr |  |-  ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> ( S .- C ) ( leG ` G ) ( R .- A ) ) | 
						
							| 104 | 18 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> U e. P ) | 
						
							| 105 | 19 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> ( N ` R ) = S ) | 
						
							| 106 | 1 2 3 4 5 92 93 8 9 94 95 96 97 98 99 100 101 102 103 104 105 | opphllem3 |  |-  ( ( ( ph /\ R =/= S ) /\ ( S .- C ) ( leG ` G ) ( R .- A ) ) -> ( U ( K ` R ) A <-> ( N ` U ) ( K ` S ) C ) ) | 
						
							| 107 | 6 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> D e. ran L ) | 
						
							| 108 | 7 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> G e. TarskiG ) | 
						
							| 109 | 11 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> C e. P ) | 
						
							| 110 | 10 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> A e. P ) | 
						
							| 111 | 13 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> S e. D ) | 
						
							| 112 | 12 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> R e. D ) | 
						
							| 113 | 14 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> M e. P ) | 
						
							| 114 | 15 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> A O C ) | 
						
							| 115 | 1 2 3 4 5 107 108 110 109 114 | oppcom |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> C O A ) | 
						
							| 116 | 17 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> D ( perpG ` G ) ( C L S ) ) | 
						
							| 117 | 16 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> D ( perpG ` G ) ( A L R ) ) | 
						
							| 118 |  | simpr |  |-  ( ( ph /\ R =/= S ) -> R =/= S ) | 
						
							| 119 | 118 | necomd |  |-  ( ( ph /\ R =/= S ) -> S =/= R ) | 
						
							| 120 | 119 | adantr |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> S =/= R ) | 
						
							| 121 |  | simpr |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( R .- A ) ( leG ` G ) ( S .- C ) ) | 
						
							| 122 | 18 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> U e. P ) | 
						
							| 123 | 1 2 3 5 20 108 113 9 122 | mircl |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( N ` U ) e. P ) | 
						
							| 124 | 26 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> R e. P ) | 
						
							| 125 | 19 | ad2antrr |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( N ` R ) = S ) | 
						
							| 126 | 1 2 3 5 20 108 113 9 124 125 | mircom |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( N ` S ) = R ) | 
						
							| 127 | 1 2 3 4 5 107 108 8 9 109 110 111 112 113 115 116 117 120 121 123 126 | opphllem3 |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( ( N ` U ) ( K ` S ) C <-> ( N ` ( N ` U ) ) ( K ` R ) A ) ) | 
						
							| 128 | 1 2 3 5 20 108 113 9 122 | mirmir |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( N ` ( N ` U ) ) = U ) | 
						
							| 129 | 128 | breq1d |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( ( N ` ( N ` U ) ) ( K ` R ) A <-> U ( K ` R ) A ) ) | 
						
							| 130 | 127 129 | bitr2d |  |-  ( ( ( ph /\ R =/= S ) /\ ( R .- A ) ( leG ` G ) ( S .- C ) ) -> ( U ( K ` R ) A <-> ( N ` U ) ( K ` S ) C ) ) | 
						
							| 131 |  | eqid |  |-  ( leG ` G ) = ( leG ` G ) | 
						
							| 132 | 1 2 3 131 7 37 11 26 10 | legtrid |  |-  ( ph -> ( ( S .- C ) ( leG ` G ) ( R .- A ) \/ ( R .- A ) ( leG ` G ) ( S .- C ) ) ) | 
						
							| 133 | 132 | adantr |  |-  ( ( ph /\ R =/= S ) -> ( ( S .- C ) ( leG ` G ) ( R .- A ) \/ ( R .- A ) ( leG ` G ) ( S .- C ) ) ) | 
						
							| 134 | 106 130 133 | mpjaodan |  |-  ( ( ph /\ R =/= S ) -> ( U ( K ` R ) A <-> ( N ` U ) ( K ` S ) C ) ) | 
						
							| 135 | 91 134 | pm2.61dane |  |-  ( ph -> ( U ( K ` R ) A <-> ( N ` U ) ( K ` S ) C ) ) |