| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | hpg.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | hpg.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | hpg.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | 
						
							| 5 |  | opphl.l |  |-  L = ( LineG ` G ) | 
						
							| 6 |  | opphl.d |  |-  ( ph -> D e. ran L ) | 
						
							| 7 |  | opphl.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 8 |  | opphl.k |  |-  K = ( hlG ` G ) | 
						
							| 9 |  | oppperpex.1 |  |-  ( ph -> A e. D ) | 
						
							| 10 |  | oppperpex.2 |  |-  ( ph -> C e. P ) | 
						
							| 11 |  | oppperpex.3 |  |-  ( ph -> -. C e. D ) | 
						
							| 12 |  | oppperpex.4 |  |-  ( ph -> G TarskiGDim>= 2 ) | 
						
							| 13 |  | simprrl |  |-  ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> ( A L p ) ( perpG ` G ) ( A L x ) ) | 
						
							| 14 | 7 | ad2antrr |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> G e. TarskiG ) | 
						
							| 15 | 6 | ad2antrr |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> D e. ran L ) | 
						
							| 16 | 9 | ad2antrr |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> A e. D ) | 
						
							| 17 | 1 5 3 14 15 16 | tglnpt |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> A e. P ) | 
						
							| 18 |  | simplr |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> x e. D ) | 
						
							| 19 | 1 5 3 14 15 18 | tglnpt |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> x e. P ) | 
						
							| 20 |  | simpr |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> A =/= x ) | 
						
							| 21 | 1 3 5 14 17 19 20 20 15 16 18 | tglinethru |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> D = ( A L x ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> D = ( A L x ) ) | 
						
							| 23 | 13 22 | breqtrrd |  |-  ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> ( A L p ) ( perpG ` G ) D ) | 
						
							| 24 | 11 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> -. C e. D ) | 
						
							| 25 | 14 | adantr |  |-  ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> G e. TarskiG ) | 
						
							| 26 | 15 | adantr |  |-  ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> D e. ran L ) | 
						
							| 27 | 16 | adantr |  |-  ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> A e. D ) | 
						
							| 28 |  | simprl |  |-  ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> p e. P ) | 
						
							| 29 | 1 2 3 5 25 26 27 28 23 | footne |  |-  ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> -. p e. D ) | 
						
							| 30 | 20 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> A =/= x ) | 
						
							| 31 | 30 | neneqd |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> -. A = x ) | 
						
							| 32 |  | simprrl |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> ( t e. ( A L x ) \/ A = x ) ) | 
						
							| 33 | 32 | orcomd |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> ( A = x \/ t e. ( A L x ) ) ) | 
						
							| 34 | 33 | ord |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> ( -. A = x -> t e. ( A L x ) ) ) | 
						
							| 35 | 31 34 | mpd |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> t e. ( A L x ) ) | 
						
							| 36 | 21 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> D = ( A L x ) ) | 
						
							| 37 | 35 36 | eleqtrrd |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> t e. D ) | 
						
							| 38 |  | simprrr |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> t e. ( C I p ) ) | 
						
							| 39 | 37 38 | jca |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> ( t e. D /\ t e. ( C I p ) ) ) | 
						
							| 40 | 39 | ex |  |-  ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) -> ( ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) -> ( t e. D /\ t e. ( C I p ) ) ) ) | 
						
							| 41 | 40 | reximdv2 |  |-  ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) -> ( E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) -> E. t e. D t e. ( C I p ) ) ) | 
						
							| 42 | 41 | impr |  |-  ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> E. t e. D t e. ( C I p ) ) | 
						
							| 43 | 42 | anasss |  |-  ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> E. t e. D t e. ( C I p ) ) | 
						
							| 44 | 24 29 43 | jca31 |  |-  ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> ( ( -. C e. D /\ -. p e. D ) /\ E. t e. D t e. ( C I p ) ) ) | 
						
							| 45 | 10 | ad2antrr |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> C e. P ) | 
						
							| 46 | 45 | ad2antrr |  |-  ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) -> C e. P ) | 
						
							| 47 |  | simplr |  |-  ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) -> p e. P ) | 
						
							| 48 | 1 2 3 4 46 47 | islnopp |  |-  ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) -> ( C O p <-> ( ( -. C e. D /\ -. p e. D ) /\ E. t e. D t e. ( C I p ) ) ) ) | 
						
							| 49 | 48 | adantrr |  |-  ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> ( C O p <-> ( ( -. C e. D /\ -. p e. D ) /\ E. t e. D t e. ( C I p ) ) ) ) | 
						
							| 50 | 49 | anasss |  |-  ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> ( C O p <-> ( ( -. C e. D /\ -. p e. D ) /\ E. t e. D t e. ( C I p ) ) ) ) | 
						
							| 51 | 44 50 | mpbird |  |-  ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> C O p ) | 
						
							| 52 | 23 51 | jca |  |-  ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> ( ( A L p ) ( perpG ` G ) D /\ C O p ) ) | 
						
							| 53 | 12 | ad2antrr |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> G TarskiGDim>= 2 ) | 
						
							| 54 | 1 2 3 5 14 17 19 45 20 53 | colperpex |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> E. p e. P ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) | 
						
							| 55 | 52 54 | reximddv |  |-  ( ( ( ph /\ x e. D ) /\ A =/= x ) -> E. p e. P ( ( A L p ) ( perpG ` G ) D /\ C O p ) ) | 
						
							| 56 | 1 3 5 7 6 9 | tglnpt2 |  |-  ( ph -> E. x e. D A =/= x ) | 
						
							| 57 | 55 56 | r19.29a |  |-  ( ph -> E. p e. P ( ( A L p ) ( perpG ` G ) D /\ C O p ) ) |