Step |
Hyp |
Ref |
Expression |
1 |
|
hpg.p |
|- P = ( Base ` G ) |
2 |
|
hpg.d |
|- .- = ( dist ` G ) |
3 |
|
hpg.i |
|- I = ( Itv ` G ) |
4 |
|
hpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
5 |
|
opphl.l |
|- L = ( LineG ` G ) |
6 |
|
opphl.d |
|- ( ph -> D e. ran L ) |
7 |
|
opphl.g |
|- ( ph -> G e. TarskiG ) |
8 |
|
opphl.k |
|- K = ( hlG ` G ) |
9 |
|
oppperpex.1 |
|- ( ph -> A e. D ) |
10 |
|
oppperpex.2 |
|- ( ph -> C e. P ) |
11 |
|
oppperpex.3 |
|- ( ph -> -. C e. D ) |
12 |
|
oppperpex.4 |
|- ( ph -> G TarskiGDim>= 2 ) |
13 |
|
simprrl |
|- ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> ( A L p ) ( perpG ` G ) ( A L x ) ) |
14 |
7
|
ad2antrr |
|- ( ( ( ph /\ x e. D ) /\ A =/= x ) -> G e. TarskiG ) |
15 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. D ) /\ A =/= x ) -> D e. ran L ) |
16 |
9
|
ad2antrr |
|- ( ( ( ph /\ x e. D ) /\ A =/= x ) -> A e. D ) |
17 |
1 5 3 14 15 16
|
tglnpt |
|- ( ( ( ph /\ x e. D ) /\ A =/= x ) -> A e. P ) |
18 |
|
simplr |
|- ( ( ( ph /\ x e. D ) /\ A =/= x ) -> x e. D ) |
19 |
1 5 3 14 15 18
|
tglnpt |
|- ( ( ( ph /\ x e. D ) /\ A =/= x ) -> x e. P ) |
20 |
|
simpr |
|- ( ( ( ph /\ x e. D ) /\ A =/= x ) -> A =/= x ) |
21 |
1 3 5 14 17 19 20 20 15 16 18
|
tglinethru |
|- ( ( ( ph /\ x e. D ) /\ A =/= x ) -> D = ( A L x ) ) |
22 |
21
|
adantr |
|- ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> D = ( A L x ) ) |
23 |
13 22
|
breqtrrd |
|- ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> ( A L p ) ( perpG ` G ) D ) |
24 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> -. C e. D ) |
25 |
14
|
adantr |
|- ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> G e. TarskiG ) |
26 |
15
|
adantr |
|- ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> D e. ran L ) |
27 |
16
|
adantr |
|- ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> A e. D ) |
28 |
|
simprl |
|- ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> p e. P ) |
29 |
1 2 3 5 25 26 27 28 23
|
footne |
|- ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> -. p e. D ) |
30 |
20
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> A =/= x ) |
31 |
30
|
neneqd |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> -. A = x ) |
32 |
|
simprrl |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> ( t e. ( A L x ) \/ A = x ) ) |
33 |
32
|
orcomd |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> ( A = x \/ t e. ( A L x ) ) ) |
34 |
33
|
ord |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> ( -. A = x -> t e. ( A L x ) ) ) |
35 |
31 34
|
mpd |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> t e. ( A L x ) ) |
36 |
21
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> D = ( A L x ) ) |
37 |
35 36
|
eleqtrrd |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> t e. D ) |
38 |
|
simprrr |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> t e. ( C I p ) ) |
39 |
37 38
|
jca |
|- ( ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) /\ ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> ( t e. D /\ t e. ( C I p ) ) ) |
40 |
39
|
ex |
|- ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) -> ( ( t e. P /\ ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) -> ( t e. D /\ t e. ( C I p ) ) ) ) |
41 |
40
|
reximdv2 |
|- ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) -> ( E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) -> E. t e. D t e. ( C I p ) ) ) |
42 |
41
|
impr |
|- ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> E. t e. D t e. ( C I p ) ) |
43 |
42
|
anasss |
|- ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> E. t e. D t e. ( C I p ) ) |
44 |
24 29 43
|
jca31 |
|- ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> ( ( -. C e. D /\ -. p e. D ) /\ E. t e. D t e. ( C I p ) ) ) |
45 |
10
|
ad2antrr |
|- ( ( ( ph /\ x e. D ) /\ A =/= x ) -> C e. P ) |
46 |
45
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) -> C e. P ) |
47 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) -> p e. P ) |
48 |
1 2 3 4 46 47
|
islnopp |
|- ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( A L p ) ( perpG ` G ) ( A L x ) ) -> ( C O p <-> ( ( -. C e. D /\ -. p e. D ) /\ E. t e. D t e. ( C I p ) ) ) ) |
49 |
48
|
adantrr |
|- ( ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ p e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) -> ( C O p <-> ( ( -. C e. D /\ -. p e. D ) /\ E. t e. D t e. ( C I p ) ) ) ) |
50 |
49
|
anasss |
|- ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> ( C O p <-> ( ( -. C e. D /\ -. p e. D ) /\ E. t e. D t e. ( C I p ) ) ) ) |
51 |
44 50
|
mpbird |
|- ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> C O p ) |
52 |
23 51
|
jca |
|- ( ( ( ( ph /\ x e. D ) /\ A =/= x ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) ) -> ( ( A L p ) ( perpG ` G ) D /\ C O p ) ) |
53 |
12
|
ad2antrr |
|- ( ( ( ph /\ x e. D ) /\ A =/= x ) -> G TarskiGDim>= 2 ) |
54 |
1 2 3 5 14 17 19 45 20 53
|
colperpex |
|- ( ( ( ph /\ x e. D ) /\ A =/= x ) -> E. p e. P ( ( A L p ) ( perpG ` G ) ( A L x ) /\ E. t e. P ( ( t e. ( A L x ) \/ A = x ) /\ t e. ( C I p ) ) ) ) |
55 |
52 54
|
reximddv |
|- ( ( ( ph /\ x e. D ) /\ A =/= x ) -> E. p e. P ( ( A L p ) ( perpG ` G ) D /\ C O p ) ) |
56 |
1 3 5 7 6 9
|
tglnpt2 |
|- ( ph -> E. x e. D A =/= x ) |
57 |
55 56
|
r19.29a |
|- ( ph -> E. p e. P ( ( A L p ) ( perpG ` G ) D /\ C O p ) ) |