Metamath Proof Explorer


Theorem oppperpex

Description: Restating colperpex using the "opposite side of a line" relation. (Contributed by Thierry Arnoux, 2-Aug-2020)

Ref Expression
Hypotheses hpg.p P = Base G
hpg.d - ˙ = dist G
hpg.i I = Itv G
hpg.o O = a b | a P D b P D t D t a I b
opphl.l L = Line 𝒢 G
opphl.d φ D ran L
opphl.g φ G 𝒢 Tarski
opphl.k K = hl 𝒢 G
oppperpex.1 φ A D
oppperpex.2 φ C P
oppperpex.3 φ ¬ C D
oppperpex.4 φ G Dim 𝒢 2
Assertion oppperpex φ p P A L p 𝒢 G D C O p

Proof

Step Hyp Ref Expression
1 hpg.p P = Base G
2 hpg.d - ˙ = dist G
3 hpg.i I = Itv G
4 hpg.o O = a b | a P D b P D t D t a I b
5 opphl.l L = Line 𝒢 G
6 opphl.d φ D ran L
7 opphl.g φ G 𝒢 Tarski
8 opphl.k K = hl 𝒢 G
9 oppperpex.1 φ A D
10 oppperpex.2 φ C P
11 oppperpex.3 φ ¬ C D
12 oppperpex.4 φ G Dim 𝒢 2
13 simprrl φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p A L p 𝒢 G A L x
14 7 ad2antrr φ x D A x G 𝒢 Tarski
15 6 ad2antrr φ x D A x D ran L
16 9 ad2antrr φ x D A x A D
17 1 5 3 14 15 16 tglnpt φ x D A x A P
18 simplr φ x D A x x D
19 1 5 3 14 15 18 tglnpt φ x D A x x P
20 simpr φ x D A x A x
21 1 3 5 14 17 19 20 20 15 16 18 tglinethru φ x D A x D = A L x
22 21 adantr φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p D = A L x
23 13 22 breqtrrd φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p A L p 𝒢 G D
24 11 ad3antrrr φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p ¬ C D
25 14 adantr φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p G 𝒢 Tarski
26 15 adantr φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p D ran L
27 16 adantr φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p A D
28 simprl φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p p P
29 1 2 3 5 25 26 27 28 23 footne φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p ¬ p D
30 20 ad3antrrr φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p A x
31 30 neneqd φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p ¬ A = x
32 simprrl φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p t A L x A = x
33 32 orcomd φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p A = x t A L x
34 33 ord φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p ¬ A = x t A L x
35 31 34 mpd φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p t A L x
36 21 ad3antrrr φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p D = A L x
37 35 36 eleqtrrd φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p t D
38 simprrr φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p t C I p
39 37 38 jca φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p t D t C I p
40 39 ex φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p t D t C I p
41 40 reximdv2 φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p t D t C I p
42 41 impr φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p t D t C I p
43 42 anasss φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p t D t C I p
44 24 29 43 jca31 φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p ¬ C D ¬ p D t D t C I p
45 10 ad2antrr φ x D A x C P
46 45 ad2antrr φ x D A x p P A L p 𝒢 G A L x C P
47 simplr φ x D A x p P A L p 𝒢 G A L x p P
48 1 2 3 4 46 47 islnopp φ x D A x p P A L p 𝒢 G A L x C O p ¬ C D ¬ p D t D t C I p
49 48 adantrr φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p C O p ¬ C D ¬ p D t D t C I p
50 49 anasss φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p C O p ¬ C D ¬ p D t D t C I p
51 44 50 mpbird φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p C O p
52 23 51 jca φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p A L p 𝒢 G D C O p
53 12 ad2antrr φ x D A x G Dim 𝒢 2
54 1 2 3 5 14 17 19 45 20 53 colperpex φ x D A x p P A L p 𝒢 G A L x t P t A L x A = x t C I p
55 52 54 reximddv φ x D A x p P A L p 𝒢 G D C O p
56 1 3 5 7 6 9 tglnpt2 φ x D A x
57 55 56 r19.29a φ p P A L p 𝒢 G D C O p