Description: Restating colperpex using the "opposite side of a line" relation. (Contributed by Thierry Arnoux, 2-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hpg.p | |
|
hpg.d | |
||
hpg.i | |
||
hpg.o | |
||
opphl.l | |
||
opphl.d | |
||
opphl.g | |
||
opphl.k | |
||
oppperpex.1 | |
||
oppperpex.2 | |
||
oppperpex.3 | |
||
oppperpex.4 | |
||
Assertion | oppperpex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hpg.p | |
|
2 | hpg.d | |
|
3 | hpg.i | |
|
4 | hpg.o | |
|
5 | opphl.l | |
|
6 | opphl.d | |
|
7 | opphl.g | |
|
8 | opphl.k | |
|
9 | oppperpex.1 | |
|
10 | oppperpex.2 | |
|
11 | oppperpex.3 | |
|
12 | oppperpex.4 | |
|
13 | simprrl | |
|
14 | 7 | ad2antrr | |
15 | 6 | ad2antrr | |
16 | 9 | ad2antrr | |
17 | 1 5 3 14 15 16 | tglnpt | |
18 | simplr | |
|
19 | 1 5 3 14 15 18 | tglnpt | |
20 | simpr | |
|
21 | 1 3 5 14 17 19 20 20 15 16 18 | tglinethru | |
22 | 21 | adantr | |
23 | 13 22 | breqtrrd | |
24 | 11 | ad3antrrr | |
25 | 14 | adantr | |
26 | 15 | adantr | |
27 | 16 | adantr | |
28 | simprl | |
|
29 | 1 2 3 5 25 26 27 28 23 | footne | |
30 | 20 | ad3antrrr | |
31 | 30 | neneqd | |
32 | simprrl | |
|
33 | 32 | orcomd | |
34 | 33 | ord | |
35 | 31 34 | mpd | |
36 | 21 | ad3antrrr | |
37 | 35 36 | eleqtrrd | |
38 | simprrr | |
|
39 | 37 38 | jca | |
40 | 39 | ex | |
41 | 40 | reximdv2 | |
42 | 41 | impr | |
43 | 42 | anasss | |
44 | 24 29 43 | jca31 | |
45 | 10 | ad2antrr | |
46 | 45 | ad2antrr | |
47 | simplr | |
|
48 | 1 2 3 4 46 47 | islnopp | |
49 | 48 | adantrr | |
50 | 49 | anasss | |
51 | 44 50 | mpbird | |
52 | 23 51 | jca | |
53 | 12 | ad2antrr | |
54 | 1 2 3 5 14 17 19 45 20 53 | colperpex | |
55 | 52 54 | reximddv | |
56 | 1 3 5 7 6 9 | tglnpt2 | |
57 | 55 56 | r19.29a | |