Metamath Proof Explorer


Theorem oppperpex

Description: Restating colperpex using the "opposite side of a line" relation. (Contributed by Thierry Arnoux, 2-Aug-2020)

Ref Expression
Hypotheses hpg.p P=BaseG
hpg.d -˙=distG
hpg.i I=ItvG
hpg.o O=ab|aPDbPDtDtaIb
opphl.l L=Line𝒢G
opphl.d φDranL
opphl.g φG𝒢Tarski
opphl.k K=hl𝒢G
oppperpex.1 φAD
oppperpex.2 φCP
oppperpex.3 φ¬CD
oppperpex.4 φGDim𝒢2
Assertion oppperpex φpPALp𝒢GDCOp

Proof

Step Hyp Ref Expression
1 hpg.p P=BaseG
2 hpg.d -˙=distG
3 hpg.i I=ItvG
4 hpg.o O=ab|aPDbPDtDtaIb
5 opphl.l L=Line𝒢G
6 opphl.d φDranL
7 opphl.g φG𝒢Tarski
8 opphl.k K=hl𝒢G
9 oppperpex.1 φAD
10 oppperpex.2 φCP
11 oppperpex.3 φ¬CD
12 oppperpex.4 φGDim𝒢2
13 simprrl φxDAxpPALp𝒢GALxtPtALxA=xtCIpALp𝒢GALx
14 7 ad2antrr φxDAxG𝒢Tarski
15 6 ad2antrr φxDAxDranL
16 9 ad2antrr φxDAxAD
17 1 5 3 14 15 16 tglnpt φxDAxAP
18 simplr φxDAxxD
19 1 5 3 14 15 18 tglnpt φxDAxxP
20 simpr φxDAxAx
21 1 3 5 14 17 19 20 20 15 16 18 tglinethru φxDAxD=ALx
22 21 adantr φxDAxpPALp𝒢GALxtPtALxA=xtCIpD=ALx
23 13 22 breqtrrd φxDAxpPALp𝒢GALxtPtALxA=xtCIpALp𝒢GD
24 11 ad3antrrr φxDAxpPALp𝒢GALxtPtALxA=xtCIp¬CD
25 14 adantr φxDAxpPALp𝒢GALxtPtALxA=xtCIpG𝒢Tarski
26 15 adantr φxDAxpPALp𝒢GALxtPtALxA=xtCIpDranL
27 16 adantr φxDAxpPALp𝒢GALxtPtALxA=xtCIpAD
28 simprl φxDAxpPALp𝒢GALxtPtALxA=xtCIppP
29 1 2 3 5 25 26 27 28 23 footne φxDAxpPALp𝒢GALxtPtALxA=xtCIp¬pD
30 20 ad3antrrr φxDAxpPALp𝒢GALxtPtALxA=xtCIpAx
31 30 neneqd φxDAxpPALp𝒢GALxtPtALxA=xtCIp¬A=x
32 simprrl φxDAxpPALp𝒢GALxtPtALxA=xtCIptALxA=x
33 32 orcomd φxDAxpPALp𝒢GALxtPtALxA=xtCIpA=xtALx
34 33 ord φxDAxpPALp𝒢GALxtPtALxA=xtCIp¬A=xtALx
35 31 34 mpd φxDAxpPALp𝒢GALxtPtALxA=xtCIptALx
36 21 ad3antrrr φxDAxpPALp𝒢GALxtPtALxA=xtCIpD=ALx
37 35 36 eleqtrrd φxDAxpPALp𝒢GALxtPtALxA=xtCIptD
38 simprrr φxDAxpPALp𝒢GALxtPtALxA=xtCIptCIp
39 37 38 jca φxDAxpPALp𝒢GALxtPtALxA=xtCIptDtCIp
40 39 ex φxDAxpPALp𝒢GALxtPtALxA=xtCIptDtCIp
41 40 reximdv2 φxDAxpPALp𝒢GALxtPtALxA=xtCIptDtCIp
42 41 impr φxDAxpPALp𝒢GALxtPtALxA=xtCIptDtCIp
43 42 anasss φxDAxpPALp𝒢GALxtPtALxA=xtCIptDtCIp
44 24 29 43 jca31 φxDAxpPALp𝒢GALxtPtALxA=xtCIp¬CD¬pDtDtCIp
45 10 ad2antrr φxDAxCP
46 45 ad2antrr φxDAxpPALp𝒢GALxCP
47 simplr φxDAxpPALp𝒢GALxpP
48 1 2 3 4 46 47 islnopp φxDAxpPALp𝒢GALxCOp¬CD¬pDtDtCIp
49 48 adantrr φxDAxpPALp𝒢GALxtPtALxA=xtCIpCOp¬CD¬pDtDtCIp
50 49 anasss φxDAxpPALp𝒢GALxtPtALxA=xtCIpCOp¬CD¬pDtDtCIp
51 44 50 mpbird φxDAxpPALp𝒢GALxtPtALxA=xtCIpCOp
52 23 51 jca φxDAxpPALp𝒢GALxtPtALxA=xtCIpALp𝒢GDCOp
53 12 ad2antrr φxDAxGDim𝒢2
54 1 2 3 5 14 17 19 45 20 53 colperpex φxDAxpPALp𝒢GALxtPtALxA=xtCIp
55 52 54 reximddv φxDAxpPALp𝒢GDCOp
56 1 3 5 7 6 9 tglnpt2 φxDAx
57 55 56 r19.29a φpPALp𝒢GDCOp