Metamath Proof Explorer


Theorem opptgdim2

Description: If two points opposite to a line exist, dimension must be 2 or more. (Contributed by Thierry Arnoux, 3-Mar-2020)

Ref Expression
Hypotheses hpg.p P=BaseG
hpg.d -˙=distG
hpg.i I=ItvG
hpg.o O=ab|aPDbPDtDtaIb
opphl.l L=Line𝒢G
opphl.d φDranL
opphl.g φG𝒢Tarski
oppcom.a φAP
oppcom.b φBP
oppcom.o φAOB
Assertion opptgdim2 φGDim𝒢2

Proof

Step Hyp Ref Expression
1 hpg.p P=BaseG
2 hpg.d -˙=distG
3 hpg.i I=ItvG
4 hpg.o O=ab|aPDbPDtDtaIb
5 opphl.l L=Line𝒢G
6 opphl.d φDranL
7 opphl.g φG𝒢Tarski
8 oppcom.a φAP
9 oppcom.b φBP
10 oppcom.o φAOB
11 7 ad3antrrr φxPyPD=xLyxyG𝒢Tarski
12 simpllr φxPyPD=xLyxyxP
13 simplr φxPyPD=xLyxyyP
14 8 ad3antrrr φxPyPD=xLyxyAP
15 1 2 3 4 5 6 7 8 9 10 oppne1 φ¬AD
16 15 ad3antrrr φxPyPD=xLyxy¬AD
17 simprl φxPyPD=xLyxyD=xLy
18 16 17 neleqtrd φxPyPD=xLyxy¬AxLy
19 simprr φxPyPD=xLyxyxy
20 19 neneqd φxPyPD=xLyxy¬x=y
21 ioran ¬AxLyx=y¬AxLy¬x=y
22 18 20 21 sylanbrc φxPyPD=xLyxy¬AxLyx=y
23 1 5 3 11 12 13 14 22 ncoltgdim2 φxPyPD=xLyxyGDim𝒢2
24 1 3 5 7 6 tgisline φxPyPD=xLyxy
25 23 24 r19.29vva φGDim𝒢2