Metamath Proof Explorer


Theorem ncoltgdim2

Description: If there are three non-colinear points, then the dimension is at least two. Converse of tglowdim2l . (Contributed by Thierry Arnoux, 23-Feb-2020)

Ref Expression
Hypotheses tglngval.p P=BaseG
tglngval.l L=Line𝒢G
tglngval.i I=ItvG
tglngval.g φG𝒢Tarski
tglngval.x φXP
tglngval.y φYP
tgcolg.z φZP
ncoltgdim2.1 φ¬ZXLYX=Y
Assertion ncoltgdim2 φGDim𝒢2

Proof

Step Hyp Ref Expression
1 tglngval.p P=BaseG
2 tglngval.l L=Line𝒢G
3 tglngval.i I=ItvG
4 tglngval.g φG𝒢Tarski
5 tglngval.x φXP
6 tglngval.y φYP
7 tgcolg.z φZP
8 ncoltgdim2.1 φ¬ZXLYX=Y
9 4 adantr φ¬GDim𝒢2G𝒢Tarski
10 5 adantr φ¬GDim𝒢2XP
11 6 adantr φ¬GDim𝒢2YP
12 7 adantr φ¬GDim𝒢2ZP
13 simpr φ¬GDim𝒢2¬GDim𝒢2
14 1 2 3 9 10 11 12 13 tgdim01ln φ¬GDim𝒢2ZXLYX=Y
15 8 14 mtand φ¬¬GDim𝒢2
16 15 notnotrd φGDim𝒢2