| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglngval.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | tglngval.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 3 |  | tglngval.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | tglngval.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | tglngval.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 6 |  | tglngval.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑃 ) | 
						
							| 7 |  | tgcolg.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑃 ) | 
						
							| 8 |  | ncoltgdim2.1 | ⊢ ( 𝜑  →  ¬  ( 𝑍  ∈  ( 𝑋 𝐿 𝑌 )  ∨  𝑋  =  𝑌 ) ) | 
						
							| 9 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐺 DimTarskiG≥ 2 )  →  𝐺  ∈  TarskiG ) | 
						
							| 10 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐺 DimTarskiG≥ 2 )  →  𝑋  ∈  𝑃 ) | 
						
							| 11 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐺 DimTarskiG≥ 2 )  →  𝑌  ∈  𝑃 ) | 
						
							| 12 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐺 DimTarskiG≥ 2 )  →  𝑍  ∈  𝑃 ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝐺 DimTarskiG≥ 2 )  →  ¬  𝐺 DimTarskiG≥ 2 ) | 
						
							| 14 | 1 2 3 9 10 11 12 13 | tgdim01ln | ⊢ ( ( 𝜑  ∧  ¬  𝐺 DimTarskiG≥ 2 )  →  ( 𝑍  ∈  ( 𝑋 𝐿 𝑌 )  ∨  𝑋  =  𝑌 ) ) | 
						
							| 15 | 8 14 | mtand | ⊢ ( 𝜑  →  ¬  ¬  𝐺 DimTarskiG≥ 2 ) | 
						
							| 16 | 15 | notnotrd | ⊢ ( 𝜑  →  𝐺 DimTarskiG≥ 2 ) |