| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglngval.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | tglngval.l |  |-  L = ( LineG ` G ) | 
						
							| 3 |  | tglngval.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | tglngval.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | tglngval.x |  |-  ( ph -> X e. P ) | 
						
							| 6 |  | tglngval.y |  |-  ( ph -> Y e. P ) | 
						
							| 7 |  | tgcolg.z |  |-  ( ph -> Z e. P ) | 
						
							| 8 |  | ncoltgdim2.1 |  |-  ( ph -> -. ( Z e. ( X L Y ) \/ X = Y ) ) | 
						
							| 9 | 4 | adantr |  |-  ( ( ph /\ -. G TarskiGDim>= 2 ) -> G e. TarskiG ) | 
						
							| 10 | 5 | adantr |  |-  ( ( ph /\ -. G TarskiGDim>= 2 ) -> X e. P ) | 
						
							| 11 | 6 | adantr |  |-  ( ( ph /\ -. G TarskiGDim>= 2 ) -> Y e. P ) | 
						
							| 12 | 7 | adantr |  |-  ( ( ph /\ -. G TarskiGDim>= 2 ) -> Z e. P ) | 
						
							| 13 |  | simpr |  |-  ( ( ph /\ -. G TarskiGDim>= 2 ) -> -. G TarskiGDim>= 2 ) | 
						
							| 14 | 1 2 3 9 10 11 12 13 | tgdim01ln |  |-  ( ( ph /\ -. G TarskiGDim>= 2 ) -> ( Z e. ( X L Y ) \/ X = Y ) ) | 
						
							| 15 | 8 14 | mtand |  |-  ( ph -> -. -. G TarskiGDim>= 2 ) | 
						
							| 16 | 15 | notnotrd |  |-  ( ph -> G TarskiGDim>= 2 ) |