| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglngval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tglngval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 3 |
|
tglngval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tglngval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tglngval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
| 6 |
|
tglngval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
| 7 |
|
tgcolg.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
| 8 |
|
lnxfr.r |
⊢ ∼ = ( cgrG ‘ 𝐺 ) |
| 9 |
|
lnxfr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 10 |
|
lnxfr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 11 |
|
lnxfr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 12 |
|
lnxfr.1 |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑋 𝐿 𝑍 ) ∨ 𝑋 = 𝑍 ) ) |
| 13 |
|
lnxfr.2 |
⊢ ( 𝜑 → 〈“ 𝑋 𝑌 𝑍 ”〉 ∼ 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
| 14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝐺 ∈ TarskiG ) |
| 15 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝐴 ∈ 𝑃 ) |
| 16 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝐶 ∈ 𝑃 ) |
| 17 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝐵 ∈ 𝑃 ) |
| 18 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
| 19 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝑋 ∈ 𝑃 ) |
| 20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝑌 ∈ 𝑃 ) |
| 21 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝑍 ∈ 𝑃 ) |
| 22 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 〈“ 𝑋 𝑌 𝑍 ”〉 ∼ 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
| 23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) |
| 24 |
1 18 3 8 14 19 20 21 15 17 16 22 23
|
tgbtwnxfr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 25 |
1 2 3 14 15 16 17 24
|
btwncolg1 |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → ( 𝐵 ∈ ( 𝐴 𝐿 𝐶 ) ∨ 𝐴 = 𝐶 ) ) |
| 26 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) → 𝐺 ∈ TarskiG ) |
| 27 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) → 𝐴 ∈ 𝑃 ) |
| 28 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) → 𝐶 ∈ 𝑃 ) |
| 29 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) → 𝐵 ∈ 𝑃 ) |
| 30 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) → 𝑌 ∈ 𝑃 ) |
| 31 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) → 𝑋 ∈ 𝑃 ) |
| 32 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) → 𝑍 ∈ 𝑃 ) |
| 33 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) → 〈“ 𝑋 𝑌 𝑍 ”〉 ∼ 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
| 34 |
1 18 3 8 26 31 30 32 27 29 28 33
|
cgr3swap12 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) → 〈“ 𝑌 𝑋 𝑍 ”〉 ∼ 〈“ 𝐵 𝐴 𝐶 ”〉 ) |
| 35 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) → 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) |
| 36 |
1 18 3 8 26 30 31 32 29 27 28 34 35
|
tgbtwnxfr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) → 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) |
| 37 |
1 2 3 26 27 28 29 36
|
btwncolg2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ) → ( 𝐵 ∈ ( 𝐴 𝐿 𝐶 ) ∨ 𝐴 = 𝐶 ) ) |
| 38 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝐺 ∈ TarskiG ) |
| 39 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝐴 ∈ 𝑃 ) |
| 40 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝐶 ∈ 𝑃 ) |
| 41 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝐵 ∈ 𝑃 ) |
| 42 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑋 ∈ 𝑃 ) |
| 43 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑍 ∈ 𝑃 ) |
| 44 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑌 ∈ 𝑃 ) |
| 45 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → 〈“ 𝑋 𝑌 𝑍 ”〉 ∼ 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
| 46 |
1 18 3 8 38 42 44 43 39 41 40 45
|
cgr3swap23 |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → 〈“ 𝑋 𝑍 𝑌 ”〉 ∼ 〈“ 𝐴 𝐶 𝐵 ”〉 ) |
| 47 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 48 |
1 18 3 8 38 42 43 44 39 40 41 46 47
|
tgbtwnxfr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 49 |
1 2 3 38 39 40 41 48
|
btwncolg3 |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 𝐵 ∈ ( 𝐴 𝐿 𝐶 ) ∨ 𝐴 = 𝐶 ) ) |
| 50 |
1 2 3 4 5 7 6
|
tgcolg |
⊢ ( 𝜑 → ( ( 𝑌 ∈ ( 𝑋 𝐿 𝑍 ) ∨ 𝑋 = 𝑍 ) ↔ ( 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ∨ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ∨ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) ) ) |
| 51 |
12 50
|
mpbid |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ∨ 𝑋 ∈ ( 𝑌 𝐼 𝑍 ) ∨ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) ) |
| 52 |
25 37 49 51
|
mpjao3dan |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 𝐿 𝐶 ) ∨ 𝐴 = 𝐶 ) ) |