Step |
Hyp |
Ref |
Expression |
1 |
|
tglngval.p |
|
2 |
|
tglngval.l |
|
3 |
|
tglngval.i |
|
4 |
|
tglngval.g |
|
5 |
|
tglngval.x |
|
6 |
|
tglngval.y |
|
7 |
|
tgcolg.z |
|
8 |
|
lnxfr.r |
|
9 |
|
lnxfr.a |
|
10 |
|
lnxfr.b |
|
11 |
|
lnxfr.c |
|
12 |
|
lnxfr.1 |
|
13 |
|
lnxfr.2 |
|
14 |
4
|
adantr |
|
15 |
9
|
adantr |
|
16 |
11
|
adantr |
|
17 |
10
|
adantr |
|
18 |
|
eqid |
|
19 |
5
|
adantr |
|
20 |
6
|
adantr |
|
21 |
7
|
adantr |
|
22 |
13
|
adantr |
|
23 |
|
simpr |
|
24 |
1 18 3 8 14 19 20 21 15 17 16 22 23
|
tgbtwnxfr |
|
25 |
1 2 3 14 15 16 17 24
|
btwncolg1 |
|
26 |
4
|
adantr |
|
27 |
9
|
adantr |
|
28 |
11
|
adantr |
|
29 |
10
|
adantr |
|
30 |
6
|
adantr |
|
31 |
5
|
adantr |
|
32 |
7
|
adantr |
|
33 |
13
|
adantr |
|
34 |
1 18 3 8 26 31 30 32 27 29 28 33
|
cgr3swap12 |
|
35 |
|
simpr |
|
36 |
1 18 3 8 26 30 31 32 29 27 28 34 35
|
tgbtwnxfr |
|
37 |
1 2 3 26 27 28 29 36
|
btwncolg2 |
|
38 |
4
|
adantr |
|
39 |
9
|
adantr |
|
40 |
11
|
adantr |
|
41 |
10
|
adantr |
|
42 |
5
|
adantr |
|
43 |
7
|
adantr |
|
44 |
6
|
adantr |
|
45 |
13
|
adantr |
|
46 |
1 18 3 8 38 42 44 43 39 41 40 45
|
cgr3swap23 |
|
47 |
|
simpr |
|
48 |
1 18 3 8 38 42 43 44 39 40 41 46 47
|
tgbtwnxfr |
|
49 |
1 2 3 38 39 40 41 48
|
btwncolg3 |
|
50 |
1 2 3 4 5 7 6
|
tgcolg |
|
51 |
12 50
|
mpbid |
|
52 |
25 37 49 51
|
mpjao3dan |
|