| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglngval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tglngval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 3 |
|
tglngval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tglngval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tglngval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
| 6 |
|
tglngval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
| 7 |
|
tgcolg.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
| 8 |
|
tgdim01ln.1 |
⊢ ( 𝜑 → ¬ 𝐺 DimTarskiG≥ 2 ) |
| 9 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝐺 ∈ TarskiG ) |
| 10 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑋 ∈ 𝑃 ) |
| 11 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑌 ∈ 𝑃 ) |
| 12 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑍 ∈ 𝑃 ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 14 |
1 2 3 9 10 11 12 13
|
btwncolg1 |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ∨ 𝑋 = 𝑌 ) ) |
| 15 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ) → 𝐺 ∈ TarskiG ) |
| 16 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ) → 𝑋 ∈ 𝑃 ) |
| 17 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ) → 𝑌 ∈ 𝑃 ) |
| 18 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ) → 𝑍 ∈ 𝑃 ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ) → 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ) |
| 20 |
1 2 3 15 16 17 18 19
|
btwncolg2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ) → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ∨ 𝑋 = 𝑌 ) ) |
| 21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝐺 ∈ TarskiG ) |
| 22 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝑋 ∈ 𝑃 ) |
| 23 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝑌 ∈ 𝑃 ) |
| 24 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝑍 ∈ 𝑃 ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) |
| 26 |
1 2 3 21 22 23 24 25
|
btwncolg3 |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ∨ 𝑋 = 𝑌 ) ) |
| 27 |
1 3 4 8 5 6 7
|
tgdim01 |
⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) |
| 28 |
14 20 26 27
|
mpjao3dan |
⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ∨ 𝑋 = 𝑌 ) ) |