Metamath Proof Explorer


Theorem tglowdim2l

Description: Reformulation of the lower dimension axiom for dimension two. There exist three non-colinear points. Theorem 6.24 of Schwabhauser p. 46. (Contributed by Thierry Arnoux, 30-May-2019)

Ref Expression
Hypotheses tglineintmo.p P=BaseG
tglineintmo.i I=ItvG
tglineintmo.l L=Line𝒢G
tglineintmo.g φG𝒢Tarski
tglowdim2l.1 φGDim𝒢2
Assertion tglowdim2l φaPbPcP¬caLba=b

Proof

Step Hyp Ref Expression
1 tglineintmo.p P=BaseG
2 tglineintmo.i I=ItvG
3 tglineintmo.l L=Line𝒢G
4 tglineintmo.g φG𝒢Tarski
5 tglowdim2l.1 φGDim𝒢2
6 eqid distG=distG
7 1 6 2 4 5 axtglowdim2 φaPbPcP¬caIbacIbbaIc
8 4 ad3antrrr φaPbPcPG𝒢Tarski
9 simpllr φaPbPcPaP
10 simplr φaPbPcPbP
11 simpr φaPbPcPcP
12 1 3 2 8 9 10 11 tgcolg φaPbPcPcaLba=bcaIbacIbbaIc
13 12 notbid φaPbPcP¬caLba=b¬caIbacIbbaIc
14 13 rexbidva φaPbPcP¬caLba=bcP¬caIbacIbbaIc
15 14 rexbidva φaPbPcP¬caLba=bbPcP¬caIbacIbbaIc
16 15 rexbidva φaPbPcP¬caLba=baPbPcP¬caIbacIbbaIc
17 7 16 mpbird φaPbPcP¬caLba=b