Metamath Proof Explorer


Theorem tglowdim2ln

Description: There is always one point outside of any line. Theorem 6.25 of Schwabhauser p. 46. (Contributed by Thierry Arnoux, 16-Nov-2019)

Ref Expression
Hypotheses tglineintmo.p P = Base G
tglineintmo.i I = Itv G
tglineintmo.l L = Line 𝒢 G
tglineintmo.g φ G 𝒢 Tarski
tglowdim2l.1 φ G Dim 𝒢 2
tglowdim2ln.a φ A P
tglowdim2ln.b φ B P
tglowdim2ln.1 φ A B
Assertion tglowdim2ln φ c P ¬ c A L B

Proof

Step Hyp Ref Expression
1 tglineintmo.p P = Base G
2 tglineintmo.i I = Itv G
3 tglineintmo.l L = Line 𝒢 G
4 tglineintmo.g φ G 𝒢 Tarski
5 tglowdim2l.1 φ G Dim 𝒢 2
6 tglowdim2ln.a φ A P
7 tglowdim2ln.b φ B P
8 tglowdim2ln.1 φ A B
9 1 2 3 4 5 tglowdim2l φ a P b P z P ¬ z a L b a = b
10 9 adantr φ c P c A L B a P b P z P ¬ z a L b a = b
11 eleq1w c = z c A L B z A L B
12 simpllr φ c P c A L B a P b P z P ¬ a = b c P c A L B
13 simplr3 φ c P c A L B a P b P z P ¬ a = b z P
14 11 12 13 rspcdva φ c P c A L B a P b P z P ¬ a = b z A L B
15 4 ad3antrrr φ c P c A L B a P b P z P ¬ a = b G 𝒢 Tarski
16 simplr1 φ c P c A L B a P b P z P ¬ a = b a P
17 simplr2 φ c P c A L B a P b P z P ¬ a = b b P
18 simpr φ c P c A L B a P b P z P ¬ a = b ¬ a = b
19 18 neqned φ c P c A L B a P b P z P ¬ a = b a b
20 6 ad3antrrr φ c P c A L B a P b P z P ¬ a = b A P
21 7 ad3antrrr φ c P c A L B a P b P z P ¬ a = b B P
22 8 ad3antrrr φ c P c A L B a P b P z P ¬ a = b A B
23 1 2 3 15 20 21 22 tgelrnln φ c P c A L B a P b P z P ¬ a = b A L B ran L
24 eleq1w c = a c A L B a A L B
25 24 12 16 rspcdva φ c P c A L B a P b P z P ¬ a = b a A L B
26 eleq1w c = b c A L B b A L B
27 26 12 17 rspcdva φ c P c A L B a P b P z P ¬ a = b b A L B
28 1 2 3 15 16 17 19 19 23 25 27 tglinethru φ c P c A L B a P b P z P ¬ a = b A L B = a L b
29 14 28 eleqtrd φ c P c A L B a P b P z P ¬ a = b z a L b
30 29 ex φ c P c A L B a P b P z P ¬ a = b z a L b
31 30 orrd φ c P c A L B a P b P z P a = b z a L b
32 31 orcomd φ c P c A L B a P b P z P z a L b a = b
33 32 ralrimivvva φ c P c A L B a P b P z P z a L b a = b
34 dfral2 z P z a L b a = b ¬ z P ¬ z a L b a = b
35 34 ralbii b P z P z a L b a = b b P ¬ z P ¬ z a L b a = b
36 ralnex b P ¬ z P ¬ z a L b a = b ¬ b P z P ¬ z a L b a = b
37 35 36 bitri b P z P z a L b a = b ¬ b P z P ¬ z a L b a = b
38 37 ralbii a P b P z P z a L b a = b a P ¬ b P z P ¬ z a L b a = b
39 ralnex a P ¬ b P z P ¬ z a L b a = b ¬ a P b P z P ¬ z a L b a = b
40 38 39 bitri a P b P z P z a L b a = b ¬ a P b P z P ¬ z a L b a = b
41 33 40 sylib φ c P c A L B ¬ a P b P z P ¬ z a L b a = b
42 10 41 pm2.65da φ ¬ c P c A L B
43 rexnal c P ¬ c A L B ¬ c P c A L B
44 42 43 sylibr φ c P ¬ c A L B