| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglineintmo.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tglineintmo.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
tglineintmo.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 4 |
|
tglineintmo.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tglowdim2l.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
| 6 |
|
tglowdim2ln.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
tglowdim2ln.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 8 |
|
tglowdim2ln.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 9 |
1 2 3 4 5
|
tglowdim2l |
⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) → ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) |
| 11 |
|
eleq1w |
⊢ ( 𝑐 = 𝑧 → ( 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ↔ 𝑧 ∈ ( 𝐴 𝐿 𝐵 ) ) ) |
| 12 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) ∧ ¬ 𝑎 = 𝑏 ) → ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 13 |
|
simplr3 |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) ∧ ¬ 𝑎 = 𝑏 ) → 𝑧 ∈ 𝑃 ) |
| 14 |
11 12 13
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) ∧ ¬ 𝑎 = 𝑏 ) → 𝑧 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 15 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) ∧ ¬ 𝑎 = 𝑏 ) → 𝐺 ∈ TarskiG ) |
| 16 |
|
simplr1 |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) ∧ ¬ 𝑎 = 𝑏 ) → 𝑎 ∈ 𝑃 ) |
| 17 |
|
simplr2 |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) ∧ ¬ 𝑎 = 𝑏 ) → 𝑏 ∈ 𝑃 ) |
| 18 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) ∧ ¬ 𝑎 = 𝑏 ) → ¬ 𝑎 = 𝑏 ) |
| 19 |
18
|
neqned |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) ∧ ¬ 𝑎 = 𝑏 ) → 𝑎 ≠ 𝑏 ) |
| 20 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) ∧ ¬ 𝑎 = 𝑏 ) → 𝐴 ∈ 𝑃 ) |
| 21 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) ∧ ¬ 𝑎 = 𝑏 ) → 𝐵 ∈ 𝑃 ) |
| 22 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) ∧ ¬ 𝑎 = 𝑏 ) → 𝐴 ≠ 𝐵 ) |
| 23 |
1 2 3 15 20 21 22
|
tgelrnln |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) ∧ ¬ 𝑎 = 𝑏 ) → ( 𝐴 𝐿 𝐵 ) ∈ ran 𝐿 ) |
| 24 |
|
eleq1w |
⊢ ( 𝑐 = 𝑎 → ( 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ↔ 𝑎 ∈ ( 𝐴 𝐿 𝐵 ) ) ) |
| 25 |
24 12 16
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) ∧ ¬ 𝑎 = 𝑏 ) → 𝑎 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 26 |
|
eleq1w |
⊢ ( 𝑐 = 𝑏 → ( 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ↔ 𝑏 ∈ ( 𝐴 𝐿 𝐵 ) ) ) |
| 27 |
26 12 17
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) ∧ ¬ 𝑎 = 𝑏 ) → 𝑏 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 28 |
1 2 3 15 16 17 19 19 23 25 27
|
tglinethru |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) ∧ ¬ 𝑎 = 𝑏 ) → ( 𝐴 𝐿 𝐵 ) = ( 𝑎 𝐿 𝑏 ) ) |
| 29 |
14 28
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) ∧ ¬ 𝑎 = 𝑏 ) → 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ) |
| 30 |
29
|
ex |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) → ( ¬ 𝑎 = 𝑏 → 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ) ) |
| 31 |
30
|
orrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) → ( 𝑎 = 𝑏 ∨ 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ) ) |
| 32 |
31
|
orcomd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ) → ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) |
| 33 |
32
|
ralrimivvva |
⊢ ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) → ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) |
| 34 |
|
dfral2 |
⊢ ( ∀ 𝑧 ∈ 𝑃 ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ↔ ¬ ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) |
| 35 |
34
|
ralbii |
⊢ ( ∀ 𝑏 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ↔ ∀ 𝑏 ∈ 𝑃 ¬ ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) |
| 36 |
|
ralnex |
⊢ ( ∀ 𝑏 ∈ 𝑃 ¬ ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ↔ ¬ ∃ 𝑏 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) |
| 37 |
35 36
|
bitri |
⊢ ( ∀ 𝑏 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ↔ ¬ ∃ 𝑏 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) |
| 38 |
37
|
ralbii |
⊢ ( ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ↔ ∀ 𝑎 ∈ 𝑃 ¬ ∃ 𝑏 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) |
| 39 |
|
ralnex |
⊢ ( ∀ 𝑎 ∈ 𝑃 ¬ ∃ 𝑏 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ↔ ¬ ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) |
| 40 |
38 39
|
bitri |
⊢ ( ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ↔ ¬ ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) |
| 41 |
33 40
|
sylib |
⊢ ( ( 𝜑 ∧ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) → ¬ ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) |
| 42 |
10 41
|
pm2.65da |
⊢ ( 𝜑 → ¬ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 43 |
|
rexnal |
⊢ ( ∃ 𝑐 ∈ 𝑃 ¬ 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ↔ ¬ ∀ 𝑐 ∈ 𝑃 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 44 |
42 43
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑐 ∈ 𝑃 ¬ 𝑐 ∈ ( 𝐴 𝐿 𝐵 ) ) |