| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hpg.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | hpg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | hpg.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 5 |  | opphl.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 6 |  | opphl.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 7 |  | opphl.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 8 |  | opphl.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 9 |  | opphllem5.n | ⊢ 𝑁  =  ( ( pInvG ‘ 𝐺 ) ‘ 𝑀 ) | 
						
							| 10 |  | opphllem5.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 11 |  | opphllem5.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 12 |  | opphllem5.r | ⊢ ( 𝜑  →  𝑅  ∈  𝐷 ) | 
						
							| 13 |  | opphllem5.s | ⊢ ( 𝜑  →  𝑆  ∈  𝐷 ) | 
						
							| 14 |  | opphllem5.m | ⊢ ( 𝜑  →  𝑀  ∈  𝑃 ) | 
						
							| 15 |  | opphllem5.o | ⊢ ( 𝜑  →  𝐴 𝑂 𝐶 ) | 
						
							| 16 |  | opphllem5.p | ⊢ ( 𝜑  →  𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑅 ) ) | 
						
							| 17 |  | opphllem5.q | ⊢ ( 𝜑  →  𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐶 𝐿 𝑆 ) ) | 
						
							| 18 |  | opphllem3.t | ⊢ ( 𝜑  →  𝑅  ≠  𝑆 ) | 
						
							| 19 |  | opphllem3.l | ⊢ ( 𝜑  →  ( 𝑆  −  𝐶 ) ( ≤G ‘ 𝐺 ) ( 𝑅  −  𝐴 ) ) | 
						
							| 20 |  | opphllem3.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑃 ) | 
						
							| 21 |  | opphllem3.v | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑅 )  =  𝑆 ) | 
						
							| 22 |  | opphllem4.u | ⊢ ( 𝜑  →  𝑉  ∈  𝑃 ) | 
						
							| 23 |  | opphllem4.1 | ⊢ ( 𝜑  →  𝑈 ( 𝐾 ‘ 𝑅 ) 𝐴 ) | 
						
							| 24 |  | opphllem4.2 | ⊢ ( 𝜑  →  𝑉 ( 𝐾 ‘ 𝑆 ) 𝐶 ) | 
						
							| 25 |  | eqid | ⊢ ( pInvG ‘ 𝐺 )  =  ( pInvG ‘ 𝐺 ) | 
						
							| 26 | 1 2 3 5 25 7 14 9 20 | mircl | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑈 )  ∈  𝑃 ) | 
						
							| 27 | 1 5 3 7 6 13 | tglnpt | ⊢ ( 𝜑  →  𝑆  ∈  𝑃 ) | 
						
							| 28 | 1 5 3 7 6 12 | tglnpt | ⊢ ( 𝜑  →  𝑅  ∈  𝑃 ) | 
						
							| 29 | 18 | necomd | ⊢ ( 𝜑  →  𝑆  ≠  𝑅 ) | 
						
							| 30 | 1 2 3 5 25 7 14 9 28 | mirbtwn | ⊢ ( 𝜑  →  𝑀  ∈  ( ( 𝑁 ‘ 𝑅 ) 𝐼 𝑅 ) ) | 
						
							| 31 | 21 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝑅 ) 𝐼 𝑅 )  =  ( 𝑆 𝐼 𝑅 ) ) | 
						
							| 32 | 30 31 | eleqtrd | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝑆 𝐼 𝑅 ) ) | 
						
							| 33 | 1 3 5 7 27 28 14 29 32 | btwnlng1 | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝑆 𝐿 𝑅 ) ) | 
						
							| 34 | 1 3 5 7 27 28 29 29 6 13 12 | tglinethru | ⊢ ( 𝜑  →  𝐷  =  ( 𝑆 𝐿 𝑅 ) ) | 
						
							| 35 | 33 34 | eleqtrrd | ⊢ ( 𝜑  →  𝑀  ∈  𝐷 ) | 
						
							| 36 | 1 2 3 4 5 6 7 10 11 15 | oppne1 | ⊢ ( 𝜑  →  ¬  𝐴  ∈  𝐷 ) | 
						
							| 37 | 1 3 8 20 10 28 7 23 | hlne1 | ⊢ ( 𝜑  →  𝑈  ≠  𝑅 ) | 
						
							| 38 | 37 | necomd | ⊢ ( 𝜑  →  𝑅  ≠  𝑈 ) | 
						
							| 39 | 1 3 8 20 10 28 7 5 23 | hlln | ⊢ ( 𝜑  →  𝑈  ∈  ( 𝐴 𝐿 𝑅 ) ) | 
						
							| 40 | 1 3 8 20 10 28 7 23 | hlne2 | ⊢ ( 𝜑  →  𝐴  ≠  𝑅 ) | 
						
							| 41 | 1 3 5 7 28 20 10 38 39 40 | lnrot1 | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝑅 𝐿 𝑈 ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  𝑈  ∈  𝐷 )  →  𝐴  ∈  ( 𝑅 𝐿 𝑈 ) ) | 
						
							| 43 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑈  ∈  𝐷 )  →  𝐺  ∈  TarskiG ) | 
						
							| 44 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑈  ∈  𝐷 )  →  𝑅  ∈  𝑃 ) | 
						
							| 45 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑈  ∈  𝐷 )  →  𝑈  ∈  𝑃 ) | 
						
							| 46 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑈  ∈  𝐷 )  →  𝑅  ≠  𝑈 ) | 
						
							| 47 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑈  ∈  𝐷 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 48 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑈  ∈  𝐷 )  →  𝑅  ∈  𝐷 ) | 
						
							| 49 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑈  ∈  𝐷 )  →  𝑈  ∈  𝐷 ) | 
						
							| 50 | 1 3 5 43 44 45 46 46 47 48 49 | tglinethru | ⊢ ( ( 𝜑  ∧  𝑈  ∈  𝐷 )  →  𝐷  =  ( 𝑅 𝐿 𝑈 ) ) | 
						
							| 51 | 42 50 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑈  ∈  𝐷 )  →  𝐴  ∈  𝐷 ) | 
						
							| 52 | 36 51 | mtand | ⊢ ( 𝜑  →  ¬  𝑈  ∈  𝐷 ) | 
						
							| 53 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ 𝑈 )  ∈  𝐷 )  →  𝐺  ∈  TarskiG ) | 
						
							| 54 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ 𝑈 )  ∈  𝐷 )  →  𝑀  ∈  𝑃 ) | 
						
							| 55 | 20 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ 𝑈 )  ∈  𝐷 )  →  𝑈  ∈  𝑃 ) | 
						
							| 56 | 1 2 3 5 25 53 54 9 55 | mirmir | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ 𝑈 )  ∈  𝐷 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑈 ) )  =  𝑈 ) | 
						
							| 57 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ 𝑈 )  ∈  𝐷 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 58 | 35 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ 𝑈 )  ∈  𝐷 )  →  𝑀  ∈  𝐷 ) | 
						
							| 59 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ 𝑈 )  ∈  𝐷 )  →  ( 𝑁 ‘ 𝑈 )  ∈  𝐷 ) | 
						
							| 60 | 1 2 3 5 25 53 9 57 58 59 | mirln | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ 𝑈 )  ∈  𝐷 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑈 ) )  ∈  𝐷 ) | 
						
							| 61 | 56 60 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ 𝑈 )  ∈  𝐷 )  →  𝑈  ∈  𝐷 ) | 
						
							| 62 | 52 61 | mtand | ⊢ ( 𝜑  →  ¬  ( 𝑁 ‘ 𝑈 )  ∈  𝐷 ) | 
						
							| 63 | 1 2 3 5 25 7 14 9 20 | mirbtwn | ⊢ ( 𝜑  →  𝑀  ∈  ( ( 𝑁 ‘ 𝑈 ) 𝐼 𝑈 ) ) | 
						
							| 64 | 1 2 3 4 26 20 35 62 52 63 | islnoppd | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑈 ) 𝑂 𝑈 ) | 
						
							| 65 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑈 )  =  ( 𝑁 ‘ 𝑈 ) ) | 
						
							| 66 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | opphllem3 | ⊢ ( 𝜑  →  ( 𝑈 ( 𝐾 ‘ 𝑅 ) 𝐴  ↔  ( 𝑁 ‘ 𝑈 ) ( 𝐾 ‘ 𝑆 ) 𝐶 ) ) | 
						
							| 67 | 23 66 | mpbid | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑈 ) ( 𝐾 ‘ 𝑆 ) 𝐶 ) | 
						
							| 68 | 1 3 8 22 11 27 7 24 | hlcomd | ⊢ ( 𝜑  →  𝐶 ( 𝐾 ‘ 𝑆 ) 𝑉 ) | 
						
							| 69 | 1 3 8 26 11 22 7 27 67 68 | hltr | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑈 ) ( 𝐾 ‘ 𝑆 ) 𝑉 ) | 
						
							| 70 | 1 3 8 26 22 27 7 | ishlg | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝑈 ) ( 𝐾 ‘ 𝑆 ) 𝑉  ↔  ( ( 𝑁 ‘ 𝑈 )  ≠  𝑆  ∧  𝑉  ≠  𝑆  ∧  ( ( 𝑁 ‘ 𝑈 )  ∈  ( 𝑆 𝐼 𝑉 )  ∨  𝑉  ∈  ( 𝑆 𝐼 ( 𝑁 ‘ 𝑈 ) ) ) ) ) ) | 
						
							| 71 | 69 70 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝑈 )  ≠  𝑆  ∧  𝑉  ≠  𝑆  ∧  ( ( 𝑁 ‘ 𝑈 )  ∈  ( 𝑆 𝐼 𝑉 )  ∨  𝑉  ∈  ( 𝑆 𝐼 ( 𝑁 ‘ 𝑈 ) ) ) ) ) | 
						
							| 72 | 71 | simp1d | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑈 )  ≠  𝑆 ) | 
						
							| 73 | 1 3 8 11 22 27 7 68 | hlne2 | ⊢ ( 𝜑  →  𝑉  ≠  𝑆 ) | 
						
							| 74 | 71 | simp3d | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝑈 )  ∈  ( 𝑆 𝐼 𝑉 )  ∨  𝑉  ∈  ( 𝑆 𝐼 ( 𝑁 ‘ 𝑈 ) ) ) ) | 
						
							| 75 | 1 2 3 4 5 6 7 9 26 22 20 13 64 35 65 72 73 74 | opphllem2 | ⊢ ( 𝜑  →  𝑉 𝑂 𝑈 ) | 
						
							| 76 | 1 2 3 4 5 6 7 22 20 75 | oppcom | ⊢ ( 𝜑  →  𝑈 𝑂 𝑉 ) |