| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hpg.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | hpg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | hpg.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 5 |  | opphl.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 6 |  | opphl.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 7 |  | opphl.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 8 |  | opphllem1.s | ⊢ 𝑆  =  ( ( pInvG ‘ 𝐺 ) ‘ 𝑀 ) | 
						
							| 9 |  | opphllem1.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 10 |  | opphllem1.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 11 |  | opphllem1.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 12 |  | opphllem1.r | ⊢ ( 𝜑  →  𝑅  ∈  𝐷 ) | 
						
							| 13 |  | opphllem1.o | ⊢ ( 𝜑  →  𝐴 𝑂 𝐶 ) | 
						
							| 14 |  | opphllem1.m | ⊢ ( 𝜑  →  𝑀  ∈  𝐷 ) | 
						
							| 15 |  | opphllem1.n | ⊢ ( 𝜑  →  𝐴  =  ( 𝑆 ‘ 𝐶 ) ) | 
						
							| 16 |  | opphllem1.x | ⊢ ( 𝜑  →  𝐴  ≠  𝑅 ) | 
						
							| 17 |  | opphllem1.y | ⊢ ( 𝜑  →  𝐵  ≠  𝑅 ) | 
						
							| 18 |  | opphllem2.z | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝑅 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝑅 𝐼 𝐴 ) ) ) | 
						
							| 19 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 20 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 21 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 22 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 23 |  | eqid | ⊢ ( pInvG ‘ 𝐺 )  =  ( pInvG ‘ 𝐺 ) | 
						
							| 24 | 1 5 3 7 6 14 | tglnpt | ⊢ ( 𝜑  →  𝑀  ∈  𝑃 ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  𝑀  ∈  𝑃 ) | 
						
							| 26 | 1 2 3 5 23 20 25 8 22 | mircl | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  ( 𝑆 ‘ 𝐵 )  ∈  𝑃 ) | 
						
							| 27 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  𝑀  ∈  𝐷 ) | 
						
							| 28 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  𝑅  ∈  𝐷 ) | 
						
							| 29 | 1 2 3 5 23 20 8 19 27 28 | mirln | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  ( 𝑆 ‘ 𝑅 )  ∈  𝐷 ) | 
						
							| 30 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  =  𝐵 )  →  𝐴  =  𝐵 ) | 
						
							| 31 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  =  𝐵 )  →  𝐵  ∈  𝐷 ) | 
						
							| 32 | 30 31 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  =  𝐵 )  →  𝐴  ∈  𝐷 ) | 
						
							| 33 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 34 | 10 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐵  ∈  𝑃 ) | 
						
							| 35 | 1 5 3 7 6 12 | tglnpt | ⊢ ( 𝜑  →  𝑅  ∈  𝑃 ) | 
						
							| 36 | 35 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝑅  ∈  𝑃 ) | 
						
							| 37 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐴  ∈  𝑃 ) | 
						
							| 38 | 17 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐵  ≠  𝑅 ) | 
						
							| 39 | 38 | necomd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝑅  ≠  𝐵 ) | 
						
							| 40 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) ) | 
						
							| 41 | 1 3 5 33 36 34 37 39 40 | btwnlng1 | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐴  ∈  ( 𝑅 𝐿 𝐵 ) ) | 
						
							| 42 | 1 3 5 33 34 36 37 38 41 | lncom | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐴  ∈  ( 𝐵 𝐿 𝑅 ) ) | 
						
							| 43 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 44 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐵  ∈  𝐷 ) | 
						
							| 45 | 12 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝑅  ∈  𝐷 ) | 
						
							| 46 | 1 3 5 33 34 36 38 38 43 44 45 | tglinethru | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐷  =  ( 𝐵 𝐿 𝑅 ) ) | 
						
							| 47 | 42 46 | eleqtrrd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  ∧  𝐴  ≠  𝐵 )  →  𝐴  ∈  𝐷 ) | 
						
							| 48 | 32 47 | pm2.61dane | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  →  𝐴  ∈  𝐷 ) | 
						
							| 49 | 1 2 3 4 5 6 7 9 11 13 | oppne1 | ⊢ ( 𝜑  →  ¬  𝐴  ∈  𝐷 ) | 
						
							| 50 | 49 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  𝐵  ∈  𝐷 )  →  ¬  𝐴  ∈  𝐷 ) | 
						
							| 51 | 48 50 | pm2.65da | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  ¬  𝐵  ∈  𝐷 ) | 
						
							| 52 | 20 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  ( 𝑆 ‘ 𝐵 )  ∈  𝐷 )  →  𝐺  ∈  TarskiG ) | 
						
							| 53 | 25 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  ( 𝑆 ‘ 𝐵 )  ∈  𝐷 )  →  𝑀  ∈  𝑃 ) | 
						
							| 54 | 22 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  ( 𝑆 ‘ 𝐵 )  ∈  𝐷 )  →  𝐵  ∈  𝑃 ) | 
						
							| 55 | 1 2 3 5 23 52 53 8 54 | mirmir | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  ( 𝑆 ‘ 𝐵 )  ∈  𝐷 )  →  ( 𝑆 ‘ ( 𝑆 ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 56 | 19 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  ( 𝑆 ‘ 𝐵 )  ∈  𝐷 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 57 | 27 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  ( 𝑆 ‘ 𝐵 )  ∈  𝐷 )  →  𝑀  ∈  𝐷 ) | 
						
							| 58 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  ( 𝑆 ‘ 𝐵 )  ∈  𝐷 )  →  ( 𝑆 ‘ 𝐵 )  ∈  𝐷 ) | 
						
							| 59 | 1 2 3 5 23 52 8 56 57 58 | mirln | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  ( 𝑆 ‘ 𝐵 )  ∈  𝐷 )  →  ( 𝑆 ‘ ( 𝑆 ‘ 𝐵 ) )  ∈  𝐷 ) | 
						
							| 60 | 55 59 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  ∧  ( 𝑆 ‘ 𝐵 )  ∈  𝐷 )  →  𝐵  ∈  𝐷 ) | 
						
							| 61 | 51 60 | mtand | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  ¬  ( 𝑆 ‘ 𝐵 )  ∈  𝐷 ) | 
						
							| 62 | 1 2 3 5 23 20 25 8 22 | mirbtwn | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  𝑀  ∈  ( ( 𝑆 ‘ 𝐵 ) 𝐼 𝐵 ) ) | 
						
							| 63 | 1 2 3 4 26 22 27 61 51 62 | islnoppd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  ( 𝑆 ‘ 𝐵 ) 𝑂 𝐵 ) | 
						
							| 64 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  ( 𝑆 ‘ 𝐵 )  =  ( 𝑆 ‘ 𝐵 ) ) | 
						
							| 65 |  | nelne2 | ⊢ ( ( ( 𝑆 ‘ 𝑅 )  ∈  𝐷  ∧  ¬  ( 𝑆 ‘ 𝐵 )  ∈  𝐷 )  →  ( 𝑆 ‘ 𝑅 )  ≠  ( 𝑆 ‘ 𝐵 ) ) | 
						
							| 66 | 29 61 65 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  ( 𝑆 ‘ 𝑅 )  ≠  ( 𝑆 ‘ 𝐵 ) ) | 
						
							| 67 | 66 | necomd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  ( 𝑆 ‘ 𝐵 )  ≠  ( 𝑆 ‘ 𝑅 ) ) | 
						
							| 68 | 1 2 3 4 5 6 7 9 11 13 | oppne2 | ⊢ ( 𝜑  →  ¬  𝐶  ∈  𝐷 ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  ¬  𝐶  ∈  𝐷 ) | 
						
							| 70 |  | nelne2 | ⊢ ( ( ( 𝑆 ‘ 𝑅 )  ∈  𝐷  ∧  ¬  𝐶  ∈  𝐷 )  →  ( 𝑆 ‘ 𝑅 )  ≠  𝐶 ) | 
						
							| 71 | 29 69 70 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  ( 𝑆 ‘ 𝑅 )  ≠  𝐶 ) | 
						
							| 72 | 71 | necomd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  𝐶  ≠  ( 𝑆 ‘ 𝑅 ) ) | 
						
							| 73 | 15 | eqcomd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐶 )  =  𝐴 ) | 
						
							| 74 | 1 2 3 5 23 7 24 8 11 73 | mircom | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐴 )  =  𝐶 ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  ( 𝑆 ‘ 𝐴 )  =  𝐶 ) | 
						
							| 76 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  𝑅  ∈  𝑃 ) | 
						
							| 77 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 78 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) ) | 
						
							| 79 | 1 2 3 5 23 20 25 8 76 77 22 78 | mirbtwni | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  ( 𝑆 ‘ 𝐴 )  ∈  ( ( 𝑆 ‘ 𝑅 ) 𝐼 ( 𝑆 ‘ 𝐵 ) ) ) | 
						
							| 80 | 75 79 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  𝐶  ∈  ( ( 𝑆 ‘ 𝑅 ) 𝐼 ( 𝑆 ‘ 𝐵 ) ) ) | 
						
							| 81 | 1 2 3 4 5 19 20 8 26 21 22 29 63 27 64 67 72 80 | opphllem1 | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  𝐶 𝑂 𝐵 ) | 
						
							| 82 | 1 2 3 4 5 19 20 21 22 81 | oppcom | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝑅 𝐼 𝐵 ) )  →  𝐵 𝑂 𝐶 ) | 
						
							| 83 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝑅 𝐼 𝐴 ) )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 84 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝑅 𝐼 𝐴 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 85 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝑅 𝐼 𝐴 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 86 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝑅 𝐼 𝐴 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 87 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝑅 𝐼 𝐴 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 88 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝑅 𝐼 𝐴 ) )  →  𝑅  ∈  𝐷 ) | 
						
							| 89 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝑅 𝐼 𝐴 ) )  →  𝐴 𝑂 𝐶 ) | 
						
							| 90 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝑅 𝐼 𝐴 ) )  →  𝑀  ∈  𝐷 ) | 
						
							| 91 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝑅 𝐼 𝐴 ) )  →  𝐴  =  ( 𝑆 ‘ 𝐶 ) ) | 
						
							| 92 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝑅 𝐼 𝐴 ) )  →  𝐴  ≠  𝑅 ) | 
						
							| 93 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝑅 𝐼 𝐴 ) )  →  𝐵  ≠  𝑅 ) | 
						
							| 94 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝑅 𝐼 𝐴 ) )  →  𝐵  ∈  ( 𝑅 𝐼 𝐴 ) ) | 
						
							| 95 | 1 2 3 4 5 83 84 8 85 86 87 88 89 90 91 92 93 94 | opphllem1 | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝑅 𝐼 𝐴 ) )  →  𝐵 𝑂 𝐶 ) | 
						
							| 96 | 82 95 18 | mpjaodan | ⊢ ( 𝜑  →  𝐵 𝑂 𝐶 ) |