Metamath Proof Explorer


Theorem opphllem

Description: Lemma 8.24 of Schwabhauser p. 66. This is used later for mideulem and later for opphl . (Contributed by Thierry Arnoux, 21-Dec-2019)

Ref Expression
Hypotheses colperpex.p P=BaseG
colperpex.d -˙=distG
colperpex.i I=ItvG
colperpex.l L=Line𝒢G
colperpex.g φG𝒢Tarski
mideu.s S=pInv𝒢G
mideu.1 φAP
mideu.2 φBP
mideulem.1 φAB
mideulem.2 φQP
mideulem.3 φOP
mideulem.4 φTP
mideulem.5 φALB𝒢GQLB
mideulem.6 φALB𝒢GALO
mideulem.7 φTALB
mideulem.8 φTQIO
opphllem.1 φRP
opphllem.2 φRBIQ
opphllem.3 φA-˙O=B-˙R
Assertion opphllem φxPB=SxAO=SxR

Proof

Step Hyp Ref Expression
1 colperpex.p P=BaseG
2 colperpex.d -˙=distG
3 colperpex.i I=ItvG
4 colperpex.l L=Line𝒢G
5 colperpex.g φG𝒢Tarski
6 mideu.s S=pInv𝒢G
7 mideu.1 φAP
8 mideu.2 φBP
9 mideulem.1 φAB
10 mideulem.2 φQP
11 mideulem.3 φOP
12 mideulem.4 φTP
13 mideulem.5 φALB𝒢GQLB
14 mideulem.6 φALB𝒢GALO
15 mideulem.7 φTALB
16 mideulem.8 φTQIO
17 opphllem.1 φRP
18 opphllem.2 φRBIQ
19 opphllem.3 φA-˙O=B-˙R
20 5 adantr φxPxTIBxRIOG𝒢Tarski
21 eqid Sx=Sx
22 8 adantr φxPxTIBxRIOBP
23 11 adantr φxPxTIBxRIOOP
24 7 adantr φxPxTIBxRIOAP
25 17 adantr φxPxTIBxRIORP
26 simprl φxPxTIBxRIOxP
27 9 necomd φBA
28 27 neneqd φ¬B=A
29 28 adantr φOBLA¬B=A
30 4 5 14 perpln2 φALOranL
31 1 3 4 5 7 11 30 tglnne φAO
32 31 necomd φOA
33 32 neneqd φ¬O=A
34 33 adantr φOBLA¬O=A
35 29 34 jca φOBLA¬B=A¬O=A
36 5 adantr φOBLAG𝒢Tarski
37 8 adantr φOBLABP
38 7 adantr φOBLAAP
39 11 adantr φOBLAOP
40 1 3 4 5 8 7 27 tglinerflx2 φABLA
41 1 3 4 5 7 8 9 tglinecom φALB=BLA
42 41 14 eqbrtrrd φBLA𝒢GALO
43 1 2 3 4 5 8 7 40 11 42 perprag φ⟨“BAO”⟩𝒢G
44 43 adantr φOBLA⟨“BAO”⟩𝒢G
45 simpr φOBLAOBLA
46 45 orcd φOBLAOBLAB=A
47 1 2 3 4 6 36 37 38 39 44 46 ragflat3 φOBLAB=AO=A
48 oran B=AO=A¬¬B=A¬O=A
49 47 48 sylib φOBLA¬¬B=A¬O=A
50 35 49 pm2.65da φ¬OBLA
51 50 adantr φxPxTIBxRIO¬OBLA
52 41 adantr φxPxTIBxRIOALB=BLA
53 51 52 neleqtrrd φxPxTIBxRIO¬OALB
54 9 adantr φxPxTIBxRIOAB
55 54 neneqd φxPxTIBxRIO¬A=B
56 53 55 jca φxPxTIBxRIO¬OALB¬A=B
57 pm4.56 ¬OALB¬A=B¬OALBA=B
58 56 57 sylib φxPxTIBxRIO¬OALBA=B
59 1 4 3 20 24 22 23 58 ncolrot2 φxPxTIBxRIO¬BOLAO=A
60 simprrr φxPxTIBxRIOxRIO
61 1 2 3 20 25 26 23 60 tgbtwncom φxPxTIBxRIOxOIR
62 12 adantr φxPxTIBxRIOTP
63 15 adantr φxPxTIBxRIOTALB
64 simprrl φxPxTIBxRIOxTIB
65 1 3 4 20 62 24 22 26 63 64 coltr3 φxPxTIBxRIOxALB
66 50 41 neleqtrrd φ¬OALB
67 66 adantr φxPxTIBxRIO¬OALB
68 nelne2 xALB¬OALBxO
69 65 67 68 syl2anc φxPxTIBxRIOxO
70 1 2 3 20 23 26 25 61 69 tgbtwnne φxPxTIBxRIOOR
71 1 2 3 4 6 5 8 7 11 israg φ⟨“BAO”⟩𝒢GB-˙O=B-˙SAO
72 43 71 mpbid φB-˙O=B-˙SAO
73 72 ad3antrrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RB-˙O=B-˙SAO
74 5 ad3antrrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RG𝒢Tarski
75 eqid SA=SA
76 1 2 3 4 6 20 24 75 23 mircl φxPxTIBxRIOSAOP
77 76 ad2antrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RSAOP
78 7 ad3antrrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RAP
79 11 ad3antrrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙ROP
80 17 ad3antrrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RRP
81 8 ad3antrrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RBP
82 simplr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RsP
83 1 2 3 4 6 74 78 75 79 mirbtwn φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RASAOIO
84 eqid SB=SB
85 1 2 3 4 6 74 81 84 82 mirbtwn φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RBSBsIs
86 simpr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsR=Sms
87 74 ad2antrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsG𝒢Tarski
88 78 ad2antrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsAP
89 81 ad2antrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsBP
90 54 ad4antr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsAB
91 10 ad5antr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsQP
92 79 ad2antrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsOP
93 62 ad4antr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsTP
94 13 ad5antr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsALB𝒢GQLB
95 14 ad5antr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsALB𝒢GALO
96 63 ad4antr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsTALB
97 16 ad5antr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsTQIO
98 80 ad2antrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsRP
99 18 ad5antr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsRBIQ
100 19 ad5antr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsA-˙O=B-˙R
101 26 ad2antrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RxP
102 101 ad2antrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsxP
103 simp-5r φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsxPxTIBxRIO
104 103 simprd φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsxTIBxRIO
105 104 simpld φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsxTIB
106 104 simprd φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsxRIO
107 82 ad2antrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmssP
108 simpllr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsxSAOIsx-˙s=x-˙R
109 108 simpld φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsxSAOIs
110 simprr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙Rx-˙s=x-˙R
111 110 ad2antrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=Smsx-˙s=x-˙R
112 simplr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsmP
113 1 2 3 4 87 6 88 89 90 91 92 93 94 95 96 97 98 99 100 102 105 106 107 109 111 112 86 mideulem2 φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsB=m
114 113 eqcomd φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=Smsm=B
115 114 fveq2d φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsSm=SB
116 115 fveq1d φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsSms=SBs
117 86 116 eqtrd φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=SmsR=SBs
118 eqid Sm=Sm
119 1 2 3 4 6 74 118 82 80 101 110 midexlem φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RmPR=Sms
120 117 119 r19.29a φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RR=SBs
121 120 oveq1d φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RRIs=SBsIs
122 85 121 eleqtrrd φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RBRIs
123 1 2 3 4 6 74 78 75 79 mircgr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RA-˙SAO=A-˙O
124 19 ad3antrrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RA-˙O=B-˙R
125 123 124 eqtrd φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RA-˙SAO=B-˙R
126 1 2 3 74 78 77 81 80 125 tgcgrcomlr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RSAO-˙A=R-˙B
127 120 oveq2d φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RB-˙R=B-˙SBs
128 1 2 3 4 6 74 81 84 82 mircgr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RB-˙SBs=B-˙s
129 124 127 128 3eqtrd φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RA-˙O=B-˙s
130 1 2 3 74 77 78 79 80 81 82 83 122 126 129 tgcgrextend φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RSAO-˙O=R-˙s
131 1 2 3 74 77 80 axtgcgrrflx φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RSAO-˙R=R-˙SAO
132 1 2 3 74 79 80 axtgcgrrflx φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RO-˙R=R-˙O
133 60 ad2antrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RxRIO
134 simprl φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RxSAOIs
135 1 2 3 74 77 101 82 134 tgbtwncom φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RxsISAO
136 1 2 3 74 101 82 101 80 110 tgcgrcomlr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙Rs-˙x=R-˙x
137 136 eqcomd φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RR-˙x=s-˙x
138 43 ad3antrrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙R⟨“BAO”⟩𝒢G
139 54 necomd φxPxTIBxRIOBA
140 139 ad2antrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RBA
141 65 ad2antrr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RxALB
142 141 orcd φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RxALBA=B
143 1 4 3 74 78 81 101 142 colcom φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RxBLAB=A
144 1 4 3 74 81 78 101 143 colrot1 φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RBALxA=x
145 1 2 3 4 6 74 81 78 79 101 138 140 144 ragcol φxPxTIBxRIOsPxSAOIsx-˙s=x-˙R⟨“xAO”⟩𝒢G
146 1 2 3 4 6 74 101 78 79 israg φxPxTIBxRIOsPxSAOIsx-˙s=x-˙R⟨“xAO”⟩𝒢Gx-˙O=x-˙SAO
147 145 146 mpbid φxPxTIBxRIOsPxSAOIsx-˙s=x-˙Rx-˙O=x-˙SAO
148 1 2 3 74 80 101 79 82 101 77 133 135 137 147 tgcgrextend φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RR-˙O=s-˙SAO
149 132 148 eqtrd φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RO-˙R=s-˙SAO
150 1 2 3 74 77 78 79 80 80 81 82 77 83 122 130 129 131 149 tgifscgr φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RA-˙R=B-˙SAO
151 73 150 eqtr4d φxPxTIBxRIOsPxSAOIsx-˙s=x-˙RB-˙O=A-˙R
152 1 2 3 20 76 26 26 25 axtgsegcon φxPxTIBxRIOsPxSAOIsx-˙s=x-˙R
153 151 152 r19.29a φxPxTIBxRIOB-˙O=A-˙R
154 19 adantr φxPxTIBxRIOA-˙O=B-˙R
155 1 2 3 20 24 23 22 25 154 tgcgrcomlr φxPxTIBxRIOO-˙A=R-˙B
156 143 152 r19.29a φxPxTIBxRIOxBLAB=A
157 1 4 3 20 23 25 26 61 btwncolg1 φxPxTIBxRIOxOLRO=R
158 1 2 3 4 6 20 21 22 23 24 25 26 59 70 153 155 156 157 symquadlem φxPxTIBxRIOB=SxA
159 1 2 3 4 6 20 26 21 24 mirbtwn φxPxTIBxRIOxSxAIA
160 158 oveq1d φxPxTIBxRIOBIA=SxAIA
161 159 160 eleqtrrd φxPxTIBxRIOxBIA
162 1 2 3 20 22 26 24 161 tgbtwncom φxPxTIBxRIOxAIB
163 1 2 3 20 24 22 axtgcgrrflx φxPxTIBxRIOA-˙B=B-˙A
164 158 oveq2d φxPxTIBxRIOx-˙B=x-˙SxA
165 1 2 3 4 6 20 26 21 24 mircgr φxPxTIBxRIOx-˙SxA=x-˙A
166 164 165 eqtrd φxPxTIBxRIOx-˙B=x-˙A
167 1 2 3 20 24 26 22 23 22 26 24 25 162 161 163 166 154 153 tgifscgr φxPxTIBxRIOx-˙O=x-˙R
168 1 2 3 4 6 20 26 21 25 23 167 61 ismir φxPxTIBxRIOO=SxR
169 158 168 jca φxPxTIBxRIOB=SxAO=SxR
170 1 2 3 5 10 12 11 16 tgbtwncom φTOIQ
171 1 2 3 5 11 8 10 12 17 170 18 axtgpasch φxPxTIBxRIO
172 169 171 reximddv φxPB=SxAO=SxR