Metamath Proof Explorer


Theorem mideulem2

Description: Lemma for opphllem , which is itself used for mideu . (Contributed by Thierry Arnoux, 19-Feb-2020)

Ref Expression
Hypotheses colperpex.p P = Base G
colperpex.d - ˙ = dist G
colperpex.i I = Itv G
colperpex.l L = Line 𝒢 G
colperpex.g φ G 𝒢 Tarski
mideu.s S = pInv 𝒢 G
mideu.1 φ A P
mideu.2 φ B P
mideulem.1 φ A B
mideulem.2 φ Q P
mideulem.3 φ O P
mideulem.4 φ T P
mideulem.5 φ A L B 𝒢 G Q L B
mideulem.6 φ A L B 𝒢 G A L O
mideulem.7 φ T A L B
mideulem.8 φ T Q I O
opphllem.1 φ R P
opphllem.2 φ R B I Q
opphllem.3 φ A - ˙ O = B - ˙ R
mideulem2.1 φ X P
mideulem2.2 φ X T I B
mideulem2.3 φ X R I O
mideulem2.4 φ Z P
mideulem2.5 φ X S A O I Z
mideulem2.6 φ X - ˙ Z = X - ˙ R
mideulem2.7 φ M P
mideulem2.8 φ R = S M Z
Assertion mideulem2 φ B = M

Proof

Step Hyp Ref Expression
1 colperpex.p P = Base G
2 colperpex.d - ˙ = dist G
3 colperpex.i I = Itv G
4 colperpex.l L = Line 𝒢 G
5 colperpex.g φ G 𝒢 Tarski
6 mideu.s S = pInv 𝒢 G
7 mideu.1 φ A P
8 mideu.2 φ B P
9 mideulem.1 φ A B
10 mideulem.2 φ Q P
11 mideulem.3 φ O P
12 mideulem.4 φ T P
13 mideulem.5 φ A L B 𝒢 G Q L B
14 mideulem.6 φ A L B 𝒢 G A L O
15 mideulem.7 φ T A L B
16 mideulem.8 φ T Q I O
17 opphllem.1 φ R P
18 opphllem.2 φ R B I Q
19 opphllem.3 φ A - ˙ O = B - ˙ R
20 mideulem2.1 φ X P
21 mideulem2.2 φ X T I B
22 mideulem2.3 φ X R I O
23 mideulem2.4 φ Z P
24 mideulem2.5 φ X S A O I Z
25 mideulem2.6 φ X - ˙ Z = X - ˙ R
26 mideulem2.7 φ M P
27 mideulem2.8 φ R = S M Z
28 oveq2 y = B R L y = R L B
29 28 breq1d y = B R L y 𝒢 G A L B R L B 𝒢 G A L B
30 oveq2 y = M R L y = R L M
31 30 breq1d y = M R L y 𝒢 G A L B R L M 𝒢 G A L B
32 1 3 4 5 7 8 9 tgelrnln φ A L B ran L
33 9 adantr φ R A L B A B
34 33 neneqd φ R A L B ¬ A = B
35 4 5 14 perpln2 φ A L O ran L
36 1 3 4 5 7 11 35 tglnne φ A O
37 1 2 3 5 7 11 8 17 19 36 tgcgrneq φ B R
38 37 adantr φ R A L B B R
39 38 necomd φ R A L B R B
40 39 neneqd φ R A L B ¬ R = B
41 34 40 jca φ R A L B ¬ A = B ¬ R = B
42 5 adantr φ R A L B G 𝒢 Tarski
43 7 adantr φ R A L B A P
44 8 adantr φ R A L B B P
45 17 adantr φ R A L B R P
46 4 5 13 perpln2 φ Q L B ran L
47 1 3 4 5 10 8 46 tglnne φ Q B
48 1 3 4 5 10 8 47 tglinerflx2 φ B Q L B
49 1 2 3 4 5 32 46 13 perpcom φ Q L B 𝒢 G A L B
50 1 3 4 5 7 8 9 tglinecom φ A L B = B L A
51 49 50 breqtrd φ Q L B 𝒢 G B L A
52 1 2 3 4 5 10 8 48 7 51 perprag φ ⟨“ QBA ”⟩ 𝒢 G
53 1 4 3 5 8 17 10 18 btwncolg3 φ Q B L R B = R
54 1 2 3 4 6 5 10 8 7 17 52 47 53 ragcol φ ⟨“ RBA ”⟩ 𝒢 G
55 1 2 3 4 6 5 17 8 7 54 ragcom φ ⟨“ ABR ”⟩ 𝒢 G
56 55 adantr φ R A L B ⟨“ ABR ”⟩ 𝒢 G
57 animorrl φ R A L B R A L B A = B
58 1 2 3 4 6 42 43 44 45 56 57 ragflat3 φ R A L B A = B R = B
59 oran A = B R = B ¬ ¬ A = B ¬ R = B
60 58 59 sylib φ R A L B ¬ ¬ A = B ¬ R = B
61 41 60 pm2.65da φ ¬ R A L B
62 1 2 3 4 5 32 17 61 foot φ ∃! y A L B R L y 𝒢 G A L B
63 1 3 4 5 7 8 9 tglinerflx2 φ B A L B
64 9 neneqd φ ¬ A = B
65 oveq2 y = A R L y = R L A
66 65 breq1d y = A R L y 𝒢 G A L B R L A 𝒢 G A L B
67 62 adantr φ X = A ∃! y A L B R L y 𝒢 G A L B
68 1 3 4 5 7 8 9 tglinerflx1 φ A A L B
69 68 adantr φ X = A A A L B
70 63 adantr φ X = A B A L B
71 5 adantr φ X = A G 𝒢 Tarski
72 17 adantr φ X = A R P
73 7 adantr φ X = A A P
74 61 64 jca φ ¬ R A L B ¬ A = B
75 pm4.56 ¬ R A L B ¬ A = B ¬ R A L B A = B
76 74 75 sylib φ ¬ R A L B A = B
77 1 3 4 5 17 7 8 76 ncolne1 φ R A
78 77 adantr φ X = A R A
79 1 3 4 71 72 73 78 tglinecom φ X = A R L A = A L R
80 78 necomd φ X = A A R
81 11 adantr φ X = A O P
82 36 necomd φ O A
83 82 adantr φ X = A O A
84 20 adantr φ X = A X P
85 simpr φ X = A X = A
86 85 80 eqnetrd φ X = A X R
87 1 2 3 5 17 20 11 22 tgbtwncom φ X O I R
88 1 3 4 5 12 7 8 20 15 21 coltr3 φ X A L B
89 9 necomd φ B A
90 89 neneqd φ ¬ B = A
91 90 adantr φ O B L A ¬ B = A
92 82 neneqd φ ¬ O = A
93 92 adantr φ O B L A ¬ O = A
94 91 93 jca φ O B L A ¬ B = A ¬ O = A
95 5 adantr φ O B L A G 𝒢 Tarski
96 8 adantr φ O B L A B P
97 7 adantr φ O B L A A P
98 11 adantr φ O B L A O P
99 1 3 4 5 8 7 89 tglinerflx2 φ A B L A
100 50 14 eqbrtrrd φ B L A 𝒢 G A L O
101 1 2 3 4 5 8 7 99 11 100 perprag φ ⟨“ BAO ”⟩ 𝒢 G
102 101 adantr φ O B L A ⟨“ BAO ”⟩ 𝒢 G
103 animorrl φ O B L A O B L A B = A
104 1 2 3 4 6 95 96 97 98 102 103 ragflat3 φ O B L A B = A O = A
105 oran B = A O = A ¬ ¬ B = A ¬ O = A
106 104 105 sylib φ O B L A ¬ ¬ B = A ¬ O = A
107 94 106 pm2.65da φ ¬ O B L A
108 107 50 neleqtrrd φ ¬ O A L B
109 nelne2 X A L B ¬ O A L B X O
110 88 108 109 syl2anc φ X O
111 1 2 3 5 11 20 17 87 110 tgbtwnne φ O R
112 111 adantr φ X = A O R
113 112 necomd φ X = A R O
114 22 adantr φ X = A X R I O
115 1 3 4 71 72 81 84 113 114 btwnlng1 φ X = A X R L O
116 1 3 4 71 84 72 81 86 115 113 lnrot2 φ X = A O X L R
117 85 oveq1d φ X = A X L R = A L R
118 116 117 eleqtrd φ X = A O A L R
119 1 3 4 71 73 72 80 81 83 118 tglineelsb2 φ X = A A L R = A L O
120 79 119 eqtrd φ X = A R L A = A L O
121 1 2 3 4 5 32 35 14 perpcom φ A L O 𝒢 G A L B
122 121 adantr φ X = A A L O 𝒢 G A L B
123 120 122 eqbrtrd φ X = A R L A 𝒢 G A L B
124 32 adantr φ X = A A L B ran L
125 37 necomd φ R B
126 1 3 4 5 17 8 125 tgelrnln φ R L B ran L
127 126 adantr φ X = A R L B ran L
128 1 3 4 5 17 8 125 tglinerflx2 φ B R L B
129 63 128 elind φ B A L B R L B
130 1 3 4 5 17 8 125 tglinerflx1 φ R R L B
131 1 2 3 4 5 32 126 129 68 130 9 125 55 ragperp φ A L B 𝒢 G R L B
132 131 adantr φ X = A A L B 𝒢 G R L B
133 1 2 3 4 71 124 127 132 perpcom φ X = A R L B 𝒢 G A L B
134 66 29 67 69 70 123 133 reu2eqd φ X = A A = B
135 64 134 mtand φ ¬ X = A
136 135 neqned φ X A
137 136 necomd φ A X
138 eqid S A = S A
139 eqid S M = S M
140 1 2 3 4 6 5 7 138 11 mircl φ S A O P
141 88 orcd φ X A L B A = B
142 1 4 3 5 7 8 20 141 colcom φ X B L A B = A
143 1 4 3 5 8 7 20 142 colrot1 φ B A L X A = X
144 1 2 3 4 6 5 8 7 11 20 101 89 143 ragcol φ ⟨“ XAO ”⟩ 𝒢 G
145 1 2 3 4 6 5 20 7 11 israg φ ⟨“ XAO ”⟩ 𝒢 G X - ˙ O = X - ˙ S A O
146 144 145 mpbid φ X - ˙ O = X - ˙ S A O
147 25 eqcomd φ X - ˙ R = X - ˙ Z
148 eqidd φ S A O = S A O
149 27 eqcomd φ S M Z = R
150 1 2 3 4 6 5 26 139 23 149 mircom φ S M R = Z
151 150 eqcomd φ Z = S M R
152 1 2 3 4 6 5 138 139 11 140 20 17 23 7 26 87 24 146 147 148 151 krippen φ X A I M
153 1 3 4 5 7 20 26 137 152 btwnlng3 φ M A L X
154 1 3 4 5 7 8 9 20 136 88 26 153 tglineeltr φ M A L B
155 1 2 3 4 5 32 126 131 perpcom φ R L B 𝒢 G A L B
156 nelne2 M A L B ¬ R A L B M R
157 154 61 156 syl2anc φ M R
158 157 necomd φ R M
159 1 3 4 5 17 26 158 tgelrnln φ R L M ran L
160 1 3 4 5 17 26 158 tglinerflx2 φ M R L M
161 154 160 elind φ M A L B R L M
162 1 3 4 5 17 26 158 tglinerflx1 φ R R L M
163 simpr φ M = X M = X
164 5 adantr φ M = X G 𝒢 Tarski
165 26 adantr φ M = X M P
166 7 adantr φ M = X A P
167 11 adantr φ M = X O P
168 140 adantr φ M = X S A O P
169 146 adantr φ M = X X - ˙ O = X - ˙ S A O
170 163 oveq1d φ M = X M - ˙ O = X - ˙ O
171 163 oveq1d φ M = X M - ˙ S A O = X - ˙ S A O
172 169 170 171 3eqtr4rd φ M = X M - ˙ S A O = M - ˙ O
173 23 adantr φ M = X Z P
174 17 adantr φ M = X R P
175 27 adantr φ M = X R = S M Z
176 175 oveq2d φ M = X M - ˙ R = M - ˙ S M Z
177 1 2 3 4 6 164 165 139 173 mircgr φ M = X M - ˙ S M Z = M - ˙ Z
178 176 177 eqtrd φ M = X M - ˙ R = M - ˙ Z
179 1 2 3 164 165 174 165 173 178 tgcgrcomlr φ M = X R - ˙ M = Z - ˙ M
180 88 adantr φ M = X X A L B
181 163 180 eqeltrd φ M = X M A L B
182 61 adantr φ M = X ¬ R A L B
183 181 182 156 syl2anc φ M = X M R
184 183 necomd φ M = X R M
185 1 2 3 164 174 165 173 165 179 184 tgcgrneq φ M = X Z M
186 1 2 3 4 6 5 26 139 23 mirbtwn φ M S M Z I Z
187 27 oveq1d φ R I Z = S M Z I Z
188 186 187 eleqtrrd φ M R I Z
189 188 adantr φ M = X M R I Z
190 1 2 3 164 174 165 173 189 tgbtwncom φ M = X M Z I R
191 24 adantr φ M = X X S A O I Z
192 163 191 eqeltrd φ M = X M S A O I Z
193 1 2 3 164 168 165 173 192 tgbtwncom φ M = X M Z I S A O
194 22 adantr φ M = X X R I O
195 163 194 eqeltrd φ M = X M R I O
196 1 3 164 173 165 174 168 167 185 184 190 193 195 tgbtwnconn22 φ M = X M S A O I O
197 1 2 3 4 6 164 165 139 167 168 172 196 ismir φ M = X S A O = S M O
198 197 eqcomd φ M = X S M O = S A O
199 1 2 3 4 6 164 165 166 167 198 miduniq1 φ M = X M = A
200 163 199 eqtr3d φ M = X X = A
201 135 200 mtand φ ¬ M = X
202 201 neqned φ M X
203 202 necomd φ X M
204 150 oveq2d φ X - ˙ S M R = X - ˙ Z
205 204 25 eqtr2d φ X - ˙ R = X - ˙ S M R
206 1 2 3 4 6 5 20 26 17 israg φ ⟨“ XMR ”⟩ 𝒢 G X - ˙ R = X - ˙ S M R
207 205 206 mpbird φ ⟨“ XMR ”⟩ 𝒢 G
208 1 2 3 4 5 32 159 161 88 162 203 158 207 ragperp φ A L B 𝒢 G R L M
209 1 2 3 4 5 32 159 208 perpcom φ R L M 𝒢 G A L B
210 29 31 62 63 154 155 209 reu2eqd φ B = M