Step |
Hyp |
Ref |
Expression |
1 |
|
colperpex.p |
|- P = ( Base ` G ) |
2 |
|
colperpex.d |
|- .- = ( dist ` G ) |
3 |
|
colperpex.i |
|- I = ( Itv ` G ) |
4 |
|
colperpex.l |
|- L = ( LineG ` G ) |
5 |
|
colperpex.g |
|- ( ph -> G e. TarskiG ) |
6 |
|
mideu.s |
|- S = ( pInvG ` G ) |
7 |
|
mideu.1 |
|- ( ph -> A e. P ) |
8 |
|
mideu.2 |
|- ( ph -> B e. P ) |
9 |
|
mideulem.1 |
|- ( ph -> A =/= B ) |
10 |
|
mideulem.2 |
|- ( ph -> Q e. P ) |
11 |
|
mideulem.3 |
|- ( ph -> O e. P ) |
12 |
|
mideulem.4 |
|- ( ph -> T e. P ) |
13 |
|
mideulem.5 |
|- ( ph -> ( A L B ) ( perpG ` G ) ( Q L B ) ) |
14 |
|
mideulem.6 |
|- ( ph -> ( A L B ) ( perpG ` G ) ( A L O ) ) |
15 |
|
mideulem.7 |
|- ( ph -> T e. ( A L B ) ) |
16 |
|
mideulem.8 |
|- ( ph -> T e. ( Q I O ) ) |
17 |
|
opphllem.1 |
|- ( ph -> R e. P ) |
18 |
|
opphllem.2 |
|- ( ph -> R e. ( B I Q ) ) |
19 |
|
opphllem.3 |
|- ( ph -> ( A .- O ) = ( B .- R ) ) |
20 |
|
mideulem2.1 |
|- ( ph -> X e. P ) |
21 |
|
mideulem2.2 |
|- ( ph -> X e. ( T I B ) ) |
22 |
|
mideulem2.3 |
|- ( ph -> X e. ( R I O ) ) |
23 |
|
mideulem2.4 |
|- ( ph -> Z e. P ) |
24 |
|
mideulem2.5 |
|- ( ph -> X e. ( ( ( S ` A ) ` O ) I Z ) ) |
25 |
|
mideulem2.6 |
|- ( ph -> ( X .- Z ) = ( X .- R ) ) |
26 |
|
mideulem2.7 |
|- ( ph -> M e. P ) |
27 |
|
mideulem2.8 |
|- ( ph -> R = ( ( S ` M ) ` Z ) ) |
28 |
|
oveq2 |
|- ( y = B -> ( R L y ) = ( R L B ) ) |
29 |
28
|
breq1d |
|- ( y = B -> ( ( R L y ) ( perpG ` G ) ( A L B ) <-> ( R L B ) ( perpG ` G ) ( A L B ) ) ) |
30 |
|
oveq2 |
|- ( y = M -> ( R L y ) = ( R L M ) ) |
31 |
30
|
breq1d |
|- ( y = M -> ( ( R L y ) ( perpG ` G ) ( A L B ) <-> ( R L M ) ( perpG ` G ) ( A L B ) ) ) |
32 |
1 3 4 5 7 8 9
|
tgelrnln |
|- ( ph -> ( A L B ) e. ran L ) |
33 |
9
|
adantr |
|- ( ( ph /\ R e. ( A L B ) ) -> A =/= B ) |
34 |
33
|
neneqd |
|- ( ( ph /\ R e. ( A L B ) ) -> -. A = B ) |
35 |
4 5 14
|
perpln2 |
|- ( ph -> ( A L O ) e. ran L ) |
36 |
1 3 4 5 7 11 35
|
tglnne |
|- ( ph -> A =/= O ) |
37 |
1 2 3 5 7 11 8 17 19 36
|
tgcgrneq |
|- ( ph -> B =/= R ) |
38 |
37
|
adantr |
|- ( ( ph /\ R e. ( A L B ) ) -> B =/= R ) |
39 |
38
|
necomd |
|- ( ( ph /\ R e. ( A L B ) ) -> R =/= B ) |
40 |
39
|
neneqd |
|- ( ( ph /\ R e. ( A L B ) ) -> -. R = B ) |
41 |
34 40
|
jca |
|- ( ( ph /\ R e. ( A L B ) ) -> ( -. A = B /\ -. R = B ) ) |
42 |
5
|
adantr |
|- ( ( ph /\ R e. ( A L B ) ) -> G e. TarskiG ) |
43 |
7
|
adantr |
|- ( ( ph /\ R e. ( A L B ) ) -> A e. P ) |
44 |
8
|
adantr |
|- ( ( ph /\ R e. ( A L B ) ) -> B e. P ) |
45 |
17
|
adantr |
|- ( ( ph /\ R e. ( A L B ) ) -> R e. P ) |
46 |
4 5 13
|
perpln2 |
|- ( ph -> ( Q L B ) e. ran L ) |
47 |
1 3 4 5 10 8 46
|
tglnne |
|- ( ph -> Q =/= B ) |
48 |
1 3 4 5 10 8 47
|
tglinerflx2 |
|- ( ph -> B e. ( Q L B ) ) |
49 |
1 2 3 4 5 32 46 13
|
perpcom |
|- ( ph -> ( Q L B ) ( perpG ` G ) ( A L B ) ) |
50 |
1 3 4 5 7 8 9
|
tglinecom |
|- ( ph -> ( A L B ) = ( B L A ) ) |
51 |
49 50
|
breqtrd |
|- ( ph -> ( Q L B ) ( perpG ` G ) ( B L A ) ) |
52 |
1 2 3 4 5 10 8 48 7 51
|
perprag |
|- ( ph -> <" Q B A "> e. ( raG ` G ) ) |
53 |
1 4 3 5 8 17 10 18
|
btwncolg3 |
|- ( ph -> ( Q e. ( B L R ) \/ B = R ) ) |
54 |
1 2 3 4 6 5 10 8 7 17 52 47 53
|
ragcol |
|- ( ph -> <" R B A "> e. ( raG ` G ) ) |
55 |
1 2 3 4 6 5 17 8 7 54
|
ragcom |
|- ( ph -> <" A B R "> e. ( raG ` G ) ) |
56 |
55
|
adantr |
|- ( ( ph /\ R e. ( A L B ) ) -> <" A B R "> e. ( raG ` G ) ) |
57 |
|
animorrl |
|- ( ( ph /\ R e. ( A L B ) ) -> ( R e. ( A L B ) \/ A = B ) ) |
58 |
1 2 3 4 6 42 43 44 45 56 57
|
ragflat3 |
|- ( ( ph /\ R e. ( A L B ) ) -> ( A = B \/ R = B ) ) |
59 |
|
oran |
|- ( ( A = B \/ R = B ) <-> -. ( -. A = B /\ -. R = B ) ) |
60 |
58 59
|
sylib |
|- ( ( ph /\ R e. ( A L B ) ) -> -. ( -. A = B /\ -. R = B ) ) |
61 |
41 60
|
pm2.65da |
|- ( ph -> -. R e. ( A L B ) ) |
62 |
1 2 3 4 5 32 17 61
|
foot |
|- ( ph -> E! y e. ( A L B ) ( R L y ) ( perpG ` G ) ( A L B ) ) |
63 |
1 3 4 5 7 8 9
|
tglinerflx2 |
|- ( ph -> B e. ( A L B ) ) |
64 |
9
|
neneqd |
|- ( ph -> -. A = B ) |
65 |
|
oveq2 |
|- ( y = A -> ( R L y ) = ( R L A ) ) |
66 |
65
|
breq1d |
|- ( y = A -> ( ( R L y ) ( perpG ` G ) ( A L B ) <-> ( R L A ) ( perpG ` G ) ( A L B ) ) ) |
67 |
62
|
adantr |
|- ( ( ph /\ X = A ) -> E! y e. ( A L B ) ( R L y ) ( perpG ` G ) ( A L B ) ) |
68 |
1 3 4 5 7 8 9
|
tglinerflx1 |
|- ( ph -> A e. ( A L B ) ) |
69 |
68
|
adantr |
|- ( ( ph /\ X = A ) -> A e. ( A L B ) ) |
70 |
63
|
adantr |
|- ( ( ph /\ X = A ) -> B e. ( A L B ) ) |
71 |
5
|
adantr |
|- ( ( ph /\ X = A ) -> G e. TarskiG ) |
72 |
17
|
adantr |
|- ( ( ph /\ X = A ) -> R e. P ) |
73 |
7
|
adantr |
|- ( ( ph /\ X = A ) -> A e. P ) |
74 |
61 64
|
jca |
|- ( ph -> ( -. R e. ( A L B ) /\ -. A = B ) ) |
75 |
|
pm4.56 |
|- ( ( -. R e. ( A L B ) /\ -. A = B ) <-> -. ( R e. ( A L B ) \/ A = B ) ) |
76 |
74 75
|
sylib |
|- ( ph -> -. ( R e. ( A L B ) \/ A = B ) ) |
77 |
1 3 4 5 17 7 8 76
|
ncolne1 |
|- ( ph -> R =/= A ) |
78 |
77
|
adantr |
|- ( ( ph /\ X = A ) -> R =/= A ) |
79 |
1 3 4 71 72 73 78
|
tglinecom |
|- ( ( ph /\ X = A ) -> ( R L A ) = ( A L R ) ) |
80 |
78
|
necomd |
|- ( ( ph /\ X = A ) -> A =/= R ) |
81 |
11
|
adantr |
|- ( ( ph /\ X = A ) -> O e. P ) |
82 |
36
|
necomd |
|- ( ph -> O =/= A ) |
83 |
82
|
adantr |
|- ( ( ph /\ X = A ) -> O =/= A ) |
84 |
20
|
adantr |
|- ( ( ph /\ X = A ) -> X e. P ) |
85 |
|
simpr |
|- ( ( ph /\ X = A ) -> X = A ) |
86 |
85 80
|
eqnetrd |
|- ( ( ph /\ X = A ) -> X =/= R ) |
87 |
1 2 3 5 17 20 11 22
|
tgbtwncom |
|- ( ph -> X e. ( O I R ) ) |
88 |
1 3 4 5 12 7 8 20 15 21
|
coltr3 |
|- ( ph -> X e. ( A L B ) ) |
89 |
9
|
necomd |
|- ( ph -> B =/= A ) |
90 |
89
|
neneqd |
|- ( ph -> -. B = A ) |
91 |
90
|
adantr |
|- ( ( ph /\ O e. ( B L A ) ) -> -. B = A ) |
92 |
82
|
neneqd |
|- ( ph -> -. O = A ) |
93 |
92
|
adantr |
|- ( ( ph /\ O e. ( B L A ) ) -> -. O = A ) |
94 |
91 93
|
jca |
|- ( ( ph /\ O e. ( B L A ) ) -> ( -. B = A /\ -. O = A ) ) |
95 |
5
|
adantr |
|- ( ( ph /\ O e. ( B L A ) ) -> G e. TarskiG ) |
96 |
8
|
adantr |
|- ( ( ph /\ O e. ( B L A ) ) -> B e. P ) |
97 |
7
|
adantr |
|- ( ( ph /\ O e. ( B L A ) ) -> A e. P ) |
98 |
11
|
adantr |
|- ( ( ph /\ O e. ( B L A ) ) -> O e. P ) |
99 |
1 3 4 5 8 7 89
|
tglinerflx2 |
|- ( ph -> A e. ( B L A ) ) |
100 |
50 14
|
eqbrtrrd |
|- ( ph -> ( B L A ) ( perpG ` G ) ( A L O ) ) |
101 |
1 2 3 4 5 8 7 99 11 100
|
perprag |
|- ( ph -> <" B A O "> e. ( raG ` G ) ) |
102 |
101
|
adantr |
|- ( ( ph /\ O e. ( B L A ) ) -> <" B A O "> e. ( raG ` G ) ) |
103 |
|
animorrl |
|- ( ( ph /\ O e. ( B L A ) ) -> ( O e. ( B L A ) \/ B = A ) ) |
104 |
1 2 3 4 6 95 96 97 98 102 103
|
ragflat3 |
|- ( ( ph /\ O e. ( B L A ) ) -> ( B = A \/ O = A ) ) |
105 |
|
oran |
|- ( ( B = A \/ O = A ) <-> -. ( -. B = A /\ -. O = A ) ) |
106 |
104 105
|
sylib |
|- ( ( ph /\ O e. ( B L A ) ) -> -. ( -. B = A /\ -. O = A ) ) |
107 |
94 106
|
pm2.65da |
|- ( ph -> -. O e. ( B L A ) ) |
108 |
107 50
|
neleqtrrd |
|- ( ph -> -. O e. ( A L B ) ) |
109 |
|
nelne2 |
|- ( ( X e. ( A L B ) /\ -. O e. ( A L B ) ) -> X =/= O ) |
110 |
88 108 109
|
syl2anc |
|- ( ph -> X =/= O ) |
111 |
1 2 3 5 11 20 17 87 110
|
tgbtwnne |
|- ( ph -> O =/= R ) |
112 |
111
|
adantr |
|- ( ( ph /\ X = A ) -> O =/= R ) |
113 |
112
|
necomd |
|- ( ( ph /\ X = A ) -> R =/= O ) |
114 |
22
|
adantr |
|- ( ( ph /\ X = A ) -> X e. ( R I O ) ) |
115 |
1 3 4 71 72 81 84 113 114
|
btwnlng1 |
|- ( ( ph /\ X = A ) -> X e. ( R L O ) ) |
116 |
1 3 4 71 84 72 81 86 115 113
|
lnrot2 |
|- ( ( ph /\ X = A ) -> O e. ( X L R ) ) |
117 |
85
|
oveq1d |
|- ( ( ph /\ X = A ) -> ( X L R ) = ( A L R ) ) |
118 |
116 117
|
eleqtrd |
|- ( ( ph /\ X = A ) -> O e. ( A L R ) ) |
119 |
1 3 4 71 73 72 80 81 83 118
|
tglineelsb2 |
|- ( ( ph /\ X = A ) -> ( A L R ) = ( A L O ) ) |
120 |
79 119
|
eqtrd |
|- ( ( ph /\ X = A ) -> ( R L A ) = ( A L O ) ) |
121 |
1 2 3 4 5 32 35 14
|
perpcom |
|- ( ph -> ( A L O ) ( perpG ` G ) ( A L B ) ) |
122 |
121
|
adantr |
|- ( ( ph /\ X = A ) -> ( A L O ) ( perpG ` G ) ( A L B ) ) |
123 |
120 122
|
eqbrtrd |
|- ( ( ph /\ X = A ) -> ( R L A ) ( perpG ` G ) ( A L B ) ) |
124 |
32
|
adantr |
|- ( ( ph /\ X = A ) -> ( A L B ) e. ran L ) |
125 |
37
|
necomd |
|- ( ph -> R =/= B ) |
126 |
1 3 4 5 17 8 125
|
tgelrnln |
|- ( ph -> ( R L B ) e. ran L ) |
127 |
126
|
adantr |
|- ( ( ph /\ X = A ) -> ( R L B ) e. ran L ) |
128 |
1 3 4 5 17 8 125
|
tglinerflx2 |
|- ( ph -> B e. ( R L B ) ) |
129 |
63 128
|
elind |
|- ( ph -> B e. ( ( A L B ) i^i ( R L B ) ) ) |
130 |
1 3 4 5 17 8 125
|
tglinerflx1 |
|- ( ph -> R e. ( R L B ) ) |
131 |
1 2 3 4 5 32 126 129 68 130 9 125 55
|
ragperp |
|- ( ph -> ( A L B ) ( perpG ` G ) ( R L B ) ) |
132 |
131
|
adantr |
|- ( ( ph /\ X = A ) -> ( A L B ) ( perpG ` G ) ( R L B ) ) |
133 |
1 2 3 4 71 124 127 132
|
perpcom |
|- ( ( ph /\ X = A ) -> ( R L B ) ( perpG ` G ) ( A L B ) ) |
134 |
66 29 67 69 70 123 133
|
reu2eqd |
|- ( ( ph /\ X = A ) -> A = B ) |
135 |
64 134
|
mtand |
|- ( ph -> -. X = A ) |
136 |
135
|
neqned |
|- ( ph -> X =/= A ) |
137 |
136
|
necomd |
|- ( ph -> A =/= X ) |
138 |
|
eqid |
|- ( S ` A ) = ( S ` A ) |
139 |
|
eqid |
|- ( S ` M ) = ( S ` M ) |
140 |
1 2 3 4 6 5 7 138 11
|
mircl |
|- ( ph -> ( ( S ` A ) ` O ) e. P ) |
141 |
88
|
orcd |
|- ( ph -> ( X e. ( A L B ) \/ A = B ) ) |
142 |
1 4 3 5 7 8 20 141
|
colcom |
|- ( ph -> ( X e. ( B L A ) \/ B = A ) ) |
143 |
1 4 3 5 8 7 20 142
|
colrot1 |
|- ( ph -> ( B e. ( A L X ) \/ A = X ) ) |
144 |
1 2 3 4 6 5 8 7 11 20 101 89 143
|
ragcol |
|- ( ph -> <" X A O "> e. ( raG ` G ) ) |
145 |
1 2 3 4 6 5 20 7 11
|
israg |
|- ( ph -> ( <" X A O "> e. ( raG ` G ) <-> ( X .- O ) = ( X .- ( ( S ` A ) ` O ) ) ) ) |
146 |
144 145
|
mpbid |
|- ( ph -> ( X .- O ) = ( X .- ( ( S ` A ) ` O ) ) ) |
147 |
25
|
eqcomd |
|- ( ph -> ( X .- R ) = ( X .- Z ) ) |
148 |
|
eqidd |
|- ( ph -> ( ( S ` A ) ` O ) = ( ( S ` A ) ` O ) ) |
149 |
27
|
eqcomd |
|- ( ph -> ( ( S ` M ) ` Z ) = R ) |
150 |
1 2 3 4 6 5 26 139 23 149
|
mircom |
|- ( ph -> ( ( S ` M ) ` R ) = Z ) |
151 |
150
|
eqcomd |
|- ( ph -> Z = ( ( S ` M ) ` R ) ) |
152 |
1 2 3 4 6 5 138 139 11 140 20 17 23 7 26 87 24 146 147 148 151
|
krippen |
|- ( ph -> X e. ( A I M ) ) |
153 |
1 3 4 5 7 20 26 137 152
|
btwnlng3 |
|- ( ph -> M e. ( A L X ) ) |
154 |
1 3 4 5 7 8 9 20 136 88 26 153
|
tglineeltr |
|- ( ph -> M e. ( A L B ) ) |
155 |
1 2 3 4 5 32 126 131
|
perpcom |
|- ( ph -> ( R L B ) ( perpG ` G ) ( A L B ) ) |
156 |
|
nelne2 |
|- ( ( M e. ( A L B ) /\ -. R e. ( A L B ) ) -> M =/= R ) |
157 |
154 61 156
|
syl2anc |
|- ( ph -> M =/= R ) |
158 |
157
|
necomd |
|- ( ph -> R =/= M ) |
159 |
1 3 4 5 17 26 158
|
tgelrnln |
|- ( ph -> ( R L M ) e. ran L ) |
160 |
1 3 4 5 17 26 158
|
tglinerflx2 |
|- ( ph -> M e. ( R L M ) ) |
161 |
154 160
|
elind |
|- ( ph -> M e. ( ( A L B ) i^i ( R L M ) ) ) |
162 |
1 3 4 5 17 26 158
|
tglinerflx1 |
|- ( ph -> R e. ( R L M ) ) |
163 |
|
simpr |
|- ( ( ph /\ M = X ) -> M = X ) |
164 |
5
|
adantr |
|- ( ( ph /\ M = X ) -> G e. TarskiG ) |
165 |
26
|
adantr |
|- ( ( ph /\ M = X ) -> M e. P ) |
166 |
7
|
adantr |
|- ( ( ph /\ M = X ) -> A e. P ) |
167 |
11
|
adantr |
|- ( ( ph /\ M = X ) -> O e. P ) |
168 |
140
|
adantr |
|- ( ( ph /\ M = X ) -> ( ( S ` A ) ` O ) e. P ) |
169 |
146
|
adantr |
|- ( ( ph /\ M = X ) -> ( X .- O ) = ( X .- ( ( S ` A ) ` O ) ) ) |
170 |
163
|
oveq1d |
|- ( ( ph /\ M = X ) -> ( M .- O ) = ( X .- O ) ) |
171 |
163
|
oveq1d |
|- ( ( ph /\ M = X ) -> ( M .- ( ( S ` A ) ` O ) ) = ( X .- ( ( S ` A ) ` O ) ) ) |
172 |
169 170 171
|
3eqtr4rd |
|- ( ( ph /\ M = X ) -> ( M .- ( ( S ` A ) ` O ) ) = ( M .- O ) ) |
173 |
23
|
adantr |
|- ( ( ph /\ M = X ) -> Z e. P ) |
174 |
17
|
adantr |
|- ( ( ph /\ M = X ) -> R e. P ) |
175 |
27
|
adantr |
|- ( ( ph /\ M = X ) -> R = ( ( S ` M ) ` Z ) ) |
176 |
175
|
oveq2d |
|- ( ( ph /\ M = X ) -> ( M .- R ) = ( M .- ( ( S ` M ) ` Z ) ) ) |
177 |
1 2 3 4 6 164 165 139 173
|
mircgr |
|- ( ( ph /\ M = X ) -> ( M .- ( ( S ` M ) ` Z ) ) = ( M .- Z ) ) |
178 |
176 177
|
eqtrd |
|- ( ( ph /\ M = X ) -> ( M .- R ) = ( M .- Z ) ) |
179 |
1 2 3 164 165 174 165 173 178
|
tgcgrcomlr |
|- ( ( ph /\ M = X ) -> ( R .- M ) = ( Z .- M ) ) |
180 |
88
|
adantr |
|- ( ( ph /\ M = X ) -> X e. ( A L B ) ) |
181 |
163 180
|
eqeltrd |
|- ( ( ph /\ M = X ) -> M e. ( A L B ) ) |
182 |
61
|
adantr |
|- ( ( ph /\ M = X ) -> -. R e. ( A L B ) ) |
183 |
181 182 156
|
syl2anc |
|- ( ( ph /\ M = X ) -> M =/= R ) |
184 |
183
|
necomd |
|- ( ( ph /\ M = X ) -> R =/= M ) |
185 |
1 2 3 164 174 165 173 165 179 184
|
tgcgrneq |
|- ( ( ph /\ M = X ) -> Z =/= M ) |
186 |
1 2 3 4 6 5 26 139 23
|
mirbtwn |
|- ( ph -> M e. ( ( ( S ` M ) ` Z ) I Z ) ) |
187 |
27
|
oveq1d |
|- ( ph -> ( R I Z ) = ( ( ( S ` M ) ` Z ) I Z ) ) |
188 |
186 187
|
eleqtrrd |
|- ( ph -> M e. ( R I Z ) ) |
189 |
188
|
adantr |
|- ( ( ph /\ M = X ) -> M e. ( R I Z ) ) |
190 |
1 2 3 164 174 165 173 189
|
tgbtwncom |
|- ( ( ph /\ M = X ) -> M e. ( Z I R ) ) |
191 |
24
|
adantr |
|- ( ( ph /\ M = X ) -> X e. ( ( ( S ` A ) ` O ) I Z ) ) |
192 |
163 191
|
eqeltrd |
|- ( ( ph /\ M = X ) -> M e. ( ( ( S ` A ) ` O ) I Z ) ) |
193 |
1 2 3 164 168 165 173 192
|
tgbtwncom |
|- ( ( ph /\ M = X ) -> M e. ( Z I ( ( S ` A ) ` O ) ) ) |
194 |
22
|
adantr |
|- ( ( ph /\ M = X ) -> X e. ( R I O ) ) |
195 |
163 194
|
eqeltrd |
|- ( ( ph /\ M = X ) -> M e. ( R I O ) ) |
196 |
1 3 164 173 165 174 168 167 185 184 190 193 195
|
tgbtwnconn22 |
|- ( ( ph /\ M = X ) -> M e. ( ( ( S ` A ) ` O ) I O ) ) |
197 |
1 2 3 4 6 164 165 139 167 168 172 196
|
ismir |
|- ( ( ph /\ M = X ) -> ( ( S ` A ) ` O ) = ( ( S ` M ) ` O ) ) |
198 |
197
|
eqcomd |
|- ( ( ph /\ M = X ) -> ( ( S ` M ) ` O ) = ( ( S ` A ) ` O ) ) |
199 |
1 2 3 4 6 164 165 166 167 198
|
miduniq1 |
|- ( ( ph /\ M = X ) -> M = A ) |
200 |
163 199
|
eqtr3d |
|- ( ( ph /\ M = X ) -> X = A ) |
201 |
135 200
|
mtand |
|- ( ph -> -. M = X ) |
202 |
201
|
neqned |
|- ( ph -> M =/= X ) |
203 |
202
|
necomd |
|- ( ph -> X =/= M ) |
204 |
150
|
oveq2d |
|- ( ph -> ( X .- ( ( S ` M ) ` R ) ) = ( X .- Z ) ) |
205 |
204 25
|
eqtr2d |
|- ( ph -> ( X .- R ) = ( X .- ( ( S ` M ) ` R ) ) ) |
206 |
1 2 3 4 6 5 20 26 17
|
israg |
|- ( ph -> ( <" X M R "> e. ( raG ` G ) <-> ( X .- R ) = ( X .- ( ( S ` M ) ` R ) ) ) ) |
207 |
205 206
|
mpbird |
|- ( ph -> <" X M R "> e. ( raG ` G ) ) |
208 |
1 2 3 4 5 32 159 161 88 162 203 158 207
|
ragperp |
|- ( ph -> ( A L B ) ( perpG ` G ) ( R L M ) ) |
209 |
1 2 3 4 5 32 159 208
|
perpcom |
|- ( ph -> ( R L M ) ( perpG ` G ) ( A L B ) ) |
210 |
29 31 62 63 154 155 209
|
reu2eqd |
|- ( ph -> B = M ) |